![]() |
![]() |
![]() |
![]() |
order | origin | root set | chord type (as pcset) |
1 | 0 | 0 | 0 2 3 6 8 9 11 = 0: 0 2 3 6 8 9 11 = 2: 0 1 4 6 7 9 10 = 3: 0 3 5 6 8 9 11 = 6: 0 2 3 5 6 8 9 = 8: 0 1 3 4 6 7 10 = 9: 0 2 3 5 6 9 11 = 11: 0 1 3 4 7 9 10 |
1 | 2 | 2 | 0 1 4 6 7 9 10 = 0: 0 1 4 6 7 9 10 = 1: 0 3 5 6 8 9 11 = 4: 0 2 3 5 6 8 9 = 6: 0 1 3 4 6 7 10 = 7: 0 2 3 5 6 9 11 = 9: 0 1 3 4 7 9 10 = 10: 0 2 3 6 8 9 11 |
1 | 8 | 8 | 0 1 3 4 6 7 10 = 0: 0 1 3 4 6 7 10 = 1: 0 2 3 5 6 9 11 = 3: 0 1 3 4 7 9 10 = 4: 0 2 3 6 8 9 11 = 6: 0 1 4 6 7 9 10 = 7: 0 3 5 6 8 9 11 = 10: 0 2 3 5 6 8 9 |
1 | 9 | 9 | 0 2 3 5 6 9 11 = 0: 0 2 3 5 6 9 11 = 2: 0 1 3 4 7 9 10 = 3: 0 2 3 6 8 9 11 = 5: 0 1 4 6 7 9 10 = 6: 0 3 5 6 8 9 11 = 9: 0 2 3 5 6 8 9 = 11: 0 1 3 4 6 7 10 |
1 | 11 | 11 | 0 1 3 4 7 9 10 = 0: 0 1 3 4 7 9 10 = 1: 0 2 3 6 8 9 11 = 3: 0 1 4 6 7 9 10 = 4: 0 3 5 6 8 9 11 = 7: 0 2 3 5 6 8 9 = 9: 0 1 3 4 6 7 10 = 10: 0 2 3 5 6 9 11 |
order | pcset |
1 | 0 2 3 6 8 9 11 = 0: 0 2 3 6 8 9 11 = 2: 0 1 4 6 7 9 10 = 3: 0 3 5 6 8 9 11 = 6: 0 2 3 5 6 8 9 = 8: 0 1 3 4 6 7 10 = 9: 0 2 3 5 6 9 11 = 11: 0 1 3 4 7 9 10 |
2 | 0 1 2 3 4 6 7 8 9 10 11 = 0: 0 1 2 3 4 6 7 8 9 10 11 = 1: 0 1 2 3 5 6 7 8 9 10 11 = 2: 0 1 2 4 5 6 7 8 9 10 11 = 3: 0 1 3 4 5 6 7 8 9 10 11 = 4: 0 2 3 4 5 6 7 8 9 10 11 = 6: 0 1 2 3 4 5 6 7 8 9 10 = 7: 0 1 2 3 4 5 6 7 8 9 11 = 8: 0 1 2 3 4 5 6 7 8 10 11 = 9: 0 1 2 3 4 5 6 7 9 10 11 = 10: 0 1 2 3 4 5 6 8 9 10 11 = 11: 0 1 2 3 4 5 7 8 9 10 11 |
3 | 0 1 2 3 4 5 6 7 8 9 10 11 = 0: 0 1 2 3 4 5 6 7 8 9 10 11 = 1: 0 1 2 3 4 5 6 7 8 9 10 11 = 2: 0 1 2 3 4 5 6 7 8 9 10 11 = 3: 0 1 2 3 4 5 6 7 8 9 10 11 = 4: 0 1 2 3 4 5 6 7 8 9 10 11 = 5: 0 1 2 3 4 5 6 7 8 9 10 11 = 6: 0 1 2 3 4 5 6 7 8 9 10 11 = 7: 0 1 2 3 4 5 6 7 8 9 10 11 = 8: 0 1 2 3 4 5 6 7 8 9 10 11 = 9: 0 1 2 3 4 5 6 7 8 9 10 11 = 10: 0 1 2 3 4 5 6 7 8 9 10 11 = 11: 0 1 2 3 4 5 6 7 8 9 10 11 |
Chord Type | Roots | |
Unison (Scale Degrees: 1) | ||
0 = root, unison, octave | | | 0 2 3 6 8 9 11 = 0: 0 2 3 6 8 9 11 = 2: 0 1 4 6 7 9 10 = 3: 0 3 5 6 8 9 11 = 6: 0 2 3 5 6 8 9 = 8: 0 1 3 4 6 7 10 = 9: 0 2 3 5 6 9 11 = 11: 0 1 3 4 7 9 10 |
2nds / 9ths = 1st 2 notes of diamorphic scale (Scale Degrees: 12) | ||
0 1 = semitone, min. 2nd, min. 9th | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
0 2 = maj. 2nd, dim., maj. 9th | | | 0 6 9 = 0: 0 6 9 = 6: 0 3 6 = 9: 0 3 9 |
3rds / 10ths (Scale Degrees: 13) | ||
0 3 = aug. 2nd, min. 3rd, aug. 9th | | | 0 3 6 8 9 11 = 0: 0 3 6 8 9 11 = 3: 0 3 5 6 8 9 = 6: 0 2 3 5 6 9 = 8: 0 1 3 4 7 10 = 9: 0 2 3 6 9 11 = 11: 0 1 4 7 9 10 |
0 4 = maj. 3rd, maj. 10th, dim. 4th | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
4ths / 11ths (Scale Degrees: 14) | ||
0 5 = 4th, 11th, 2 in 4ths | | | 3 6 9 = 3: 0 3 6 = 6: 0 3 9 = 9: 0 6 9 |
0 6 = tritone, aug. 4th, dim. 5th, aug. 11th | | | 0 2 3 6 8 9 = 0: 0 2 3 6 8 9 = 2: 0 1 4 6 7 10 = 3: 0 3 5 6 9 11 = 6: 0 2 3 6 8 9 = 8: 0 1 4 6 7 10 = 9: 0 3 5 6 9 11 |
5ths / 12ths (Scale Degrees: 15) | ||
0 7 = 5th, 2 in 5ths | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
6ths / 13ths (Scale Degrees: 16) | ||
0 8 = aug. 5th, min. 6th, aug. 12th, min. 13th | | | 0 3 6 = 0: 0 3 6 = 3: 0 3 9 = 6: 0 6 9 |
0 9 = maj. 6th, maj. 13th, dim. 7th | | | 0 2 3 6 9 11 = 0: 0 2 3 6 9 11 = 2: 0 1 4 7 9 10 = 3: 0 3 6 8 9 11 = 6: 0 3 5 6 8 9 = 9: 0 2 3 5 6 9 = 11: 0 1 3 4 7 10 |
7ths / 14ths (Scale Degrees: 17) | ||
0 10 = aug. 6th, min. 7th, aug. 13th | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
0 11 = maj. 7th, maj. 14th | | | 0 3 9 = 0: 0 3 9 = 3: 0 6 9 = 9: 0 3 6 |
1st 3 notes of diamorphic scale (Scale Degrees: 123) | ||
0 1 3 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 1 4 | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
0 2 3 = min. trichord | | | 0 6 9 = 0: 0 6 9 = 6: 0 3 6 = 9: 0 3 9 |
0 3 4 | | | 8 11 = 8: 0 3 = 11: 0 9 |
Sus2 triads (Scale Degrees: 125) | ||
0 1 7 | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
Root with upper and lower neighbors (Scale Degrees: 127) | ||
0 2 11 | | | 0 9 = 0: 0 9 = 9: 0 3 |
Scale Degrees: 134 | ||
0 3 5 | | | 3 6 9 = 3: 0 3 6 = 6: 0 3 9 = 9: 0 6 9 |
Triads (Scale Degrees: 135) | ||
0 3 6 = dim. | | | 0 3 6 8 9 = 0: 0 3 6 8 9 = 3: 0 3 5 6 9 = 6: 0 2 3 6 9 = 8: 0 1 4 7 10 = 9: 0 3 6 9 11 |
0 3 7 = m = minor | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 4 6 = Mb5 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 4 7 = M = major | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
6ths chords no 5th (Scale Degrees: 136) | ||
0 3 9 = m6 no 5th | | | 0 3 6 9 11 = 0: 0 3 6 9 11 = 3: 0 3 6 8 9 = 6: 0 3 5 6 9 = 9: 0 2 3 6 9 = 11: 0 1 4 7 10 |
0 4 9 = M6 no 5th | | | 2 11 = 2: 0 9 = 11: 0 3 |
7th chords no 5th (Scale Degrees: 137) | ||
0 3 10 = m7 no 5th | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 3 11 = mM7 no 5th | | | 0 3 9 = 0: 0 3 9 = 3: 0 6 9 = 9: 0 3 6 |
0 4 10 = 7 no 5th | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
Sus4 Triads (Scale Degrees: 145) | ||
0 6 7 = sus#4, Viennese trichord | | | 2 8 = 2: 0 6 = 8: 0 6 |
6th chords no 3rd (Scale Degrees: 156) | ||
0 7 9 | | | 2 11 = 2: 0 9 = 11: 0 3 |
7th chords no 3rd (Scale Degrees: 157) | ||
0 7 10 = m power chord | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
chromatic tetrachord (Scale Degrees: 1223) | ||
0 1 3 4 = 1st 4 aux dim. | | | 8 11 = 8: 0 3 = 11: 0 9 |
1st 3 notes of diamorphic scale (Scale Degrees: 1234) | ||
0 2 3 5 = min. tetrachord | | | 6 9 = 6: 0 3 = 9: 0 9 |
Add 9 Chords (Scale Degrees: 1235) | ||
0 1 3 6 = dim. add b9 | | | 8 = 8: 0 |
0 1 3 7 = m add b9, all-int | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 1 4 7 = M add b9 | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
0 2 3 6 = dim. add 9 | | | 0 6 9 = 0: 0 6 9 = 6: 0 3 6 = 9: 0 3 9 |
0 3 4 6 = Mb5 add #9 | | | 8 = 8: 0 |
0 3 4 7 = add #9, maj-min chord | | | 8 11 = 8: 0 3 = 11: 0 9 |
6/9 chord no 5th (Scale Degrees: 1236) | ||
0 1 4 9 | | | 2 11 = 2: 0 9 = 11: 0 3 |
0 3 4 9 | | | 11 = 11: 0 |
9th chords no 5th (Scale Degrees: 1237) | ||
0 1 3 10 = M7b9 no 5th | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 1 4 10 = 7b9 no 5th | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
0 2 3 11 = mM9 no 5th | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 3 4 10 = 7#9 no 5th, Hendrix, all-int | | | 8 11 = 8: 0 3 = 11: 0 9 |
11th chords no 3rd no 7th (Scale Degrees: 1245) | ||
0 1 6 7 | | | 2 8 = 2: 0 6 = 8: 0 6 |
6/9 chords no 3rd (Scale Degrees: 1256) | ||
0 1 7 9 = all-int | | | 2 11 = 2: 0 9 = 11: 0 3 |
9th chords no 3rd (Scale Degrees: 1257) | ||
0 1 7 10 = 7b9 no 3rd, -7b9 no 3rd | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
13th chords no 3rd no 5th no 11th (Scale Degrees: 1267) | ||
0 2 9 11 | | | 0 9 = 0: 0 9 = 9: 0 3 |
Add 11 Chords (Scale Degrees: 1345) | ||
0 3 5 6 = blues tetrachord | | | 3 6 9 = 3: 0 3 6 = 6: 0 3 9 = 9: 0 6 9 |
0 3 6 7 = m add #11 | | | 8 = 8: 0 |
0 4 6 7 = Madd#11, Jetsons, all-int | | | 2 8 = 2: 0 6 = 8: 0 6 |
11th chords no 5th no 9th (Scale Degrees: 1347) | ||
0 3 5 11 = all-int | | | 3 9 = 3: 0 6 = 9: 0 6 |
6th Chords (Scale Degrees: 1356) | ||
0 3 6 9 = dim. 7, m6b5 | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 3 7 9 = m6 , Tristan chord | | | 11 = 11: 0 |
0 4 7 9 = 6 | | | 2 11 = 2: 0 9 = 11: 0 3 |
7th Chords (Scale Degrees: 1357) | ||
0 3 6 10 = m7b5, Tristan chord, half-dim. 7th | | | 8 = 8: 0 |
0 3 6 11 = mM7b5, dim. maj. 7th chord | | | 0 3 9 = 0: 0 3 9 = 3: 0 6 9 = 9: 0 3 6 |
0 3 7 10 = m7 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 4 6 10 = 7b5, French aug. 6th chord | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 4 7 10 = 7, German aug. 6th chord | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
6/7 chords no 5th (Scale Degrees: 1367) | ||
0 3 9 10 = m7/6 no 5th | | | 11 = 11: 0 |
0 3 9 11 = mM7/6 no 5th | | | 0 3 9 = 0: 0 3 9 = 3: 0 6 9 = 9: 0 3 6 |
0 4 9 10 = 7/6 no 5th, all-int | | | 2 11 = 2: 0 9 = 11: 0 3 |
Scale Degrees: 1456 | ||
0 6 7 9 | | | 2 = 2: 0 |
Sus 4 7th Chords (Scale Degrees: 1457) | ||
0 6 7 10 = 7sus#4, all-int | | | 2 8 = 2: 0 6 = 8: 0 6 |
Scale Degrees: 1567 | ||
0 7 9 10 | | | 2 11 = 2: 0 9 = 11: 0 3 |
Scale Degrees: 12234 | ||
0 1 3 4 6 = auxdim. pentachord | | | 8 = 8: 0 |
Scale Degrees: 12235 | ||
0 1 3 4 7 | | | 8 11 = 8: 0 3 = 11: 0 9 |
Scale Degrees: 12236 | ||
0 1 3 4 9 | | | 11 = 11: 0 |
Scale Degrees: 12237 | ||
0 1 3 4 10 | | | 8 11 = 8: 0 3 = 11: 0 9 |
1st 5 notes of diamorphic scale (Scale Degrees: 12345) | ||
0 1 3 6 7 | | | 8 = 8: 0 |
0 1 4 6 7 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 2 3 5 6 | | | 6 9 = 6: 0 3 = 9: 0 9 |
0 3 4 6 7 | | | 8 = 8: 0 |
6/9 chords (Scale Degrees: 12356) | ||
0 1 3 7 9 | | | 11 = 11: 0 |
0 1 4 7 9 = Elektra chord | | | 2 11 = 2: 0 9 = 11: 0 3 |
0 3 4 7 9 = slendro | | | 11 = 11: 0 |
9th chords (Scale Degrees: 12357) | ||
0 1 3 6 10 = m7b5b9 | | | 8 = 8: 0 |
0 1 3 7 10 = m7b9 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 1 4 6 10 = 7b5b9 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 1 4 7 10 = 7b9 | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
0 2 3 6 11 = mM9b5 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 3 4 6 10 = 7b5#9 | | | 8 = 8: 0 |
0 3 4 7 10 = 7#9 | | | 8 11 = 8: 0 3 = 11: 0 9 |
13th chords no 5th no 11th (Scale Degrees: 12367) | ||
0 1 3 9 10 = m13b9 no 5th no 11th | | | 11 = 11: 0 |
0 1 4 9 10 = 13b9 no 5th no 11th | | | 2 11 = 2: 0 9 = 11: 0 3 |
0 2 3 9 11 = M13 no 5th no 11th | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 3 4 9 10 = 13#9 no 5th no 11th | | | 11 = 11: 0 |
Scale Degrees: 12456 | ||
0 1 6 7 9 | | | 2 = 2: 0 |
11th chords no 3rd (Scale Degrees: 12457) | ||
0 1 6 7 10 | | | 2 8 = 2: 0 6 = 8: 0 6 |
13th chords no 3rd no 11th (Scale Degrees: 12567) | ||
0 1 7 9 10 | | | 2 11 = 2: 0 9 = 11: 0 3 |
Scale Degrees: 13456 | ||
0 3 5 6 8 | | | 3 6 = 3: 0 3 = 6: 0 9 |
0 4 6 7 9 | | | 2 = 2: 0 |
11th Chords no 9th (Scale Degrees: 13457) | ||
0 3 6 7 10 = m7#11 no 9th, batti min. #4 | | | 8 = 8: 0 |
0 4 6 7 10 = 7#11 no 9th | | | 2 8 = 2: 0 6 = 8: 0 6 |
7/6 Chords (Scale Degrees: 13567) | ||
0 3 7 9 10 = m7/6 | | | 11 = 11: 0 |
0 4 7 9 10 = 7/6, boogie woogie | | | 2 11 = 2: 0 9 = 11: 0 3 |
13th chords no 3rd no 9th (Scale Degrees: 14567) | ||
0 6 7 9 10 | | | 2 = 2: 0 |
Scale Degrees: 122345 | ||
0 1 3 4 6 7 = Istrian | | | 8 = 8: 0 |
Scale Degrees: 122356 | ||
0 1 3 4 7 9 | | | 11 = 11: 0 |
Scale Degrees: 122357 | ||
0 1 3 4 7 10 | | | 8 11 = 8: 0 3 = 11: 0 9 |
Scale Degrees: 122367 | ||
0 1 3 4 9 10 | | | 11 = 11: 0 |
1st 6 notes of diamorphic scale = diamorphic scales no 7th (Scale Degrees: 123456) | ||
0 1 4 6 7 9 | | | 2 = 2: 0 |
0 2 3 5 6 8 | | | 6 = 6: 0 |
11th chords = diamorphic scales no 6th (Scale Degrees: 123457) | ||
0 1 3 6 7 10 = m#11b9 | | | 8 = 8: 0 |
0 1 4 6 7 10 = M#11b9, Tritone scale, Petrushka | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 2 3 5 6 11 = mM#11 | | | 9 = 9: 0 |
0 3 4 6 7 10 = 7#9#11 | | | 8 = 8: 0 |
13th chords no 11th = diamorphic scales no 4th (Scale Degrees: 123567) | ||
0 1 3 7 9 10 = m13b9 no 11th | | | 11 = 11: 0 |
0 1 4 7 9 10 = 13b9 no 11th | | | 2 11 = 2: 0 9 = 11: 0 3 |
0 3 4 7 9 10 = 13#9 no 11th | | | 11 = 11: 0 |
diamorphic scales no 3rd (Scale Degrees: 124567) | ||
0 1 6 7 9 10 | | | 2 = 2: 0 |
diamorphic scales no 2nd (Scale Degrees: 134567) | ||
0 4 6 7 9 10 = 13#11 no 9th | | | 2 = 2: 0 |
Scale Degrees: 1223457 | ||
0 1 3 4 6 7 10 | | | 8 = 8: 0 |
Scale Degrees: 1223567 | ||
0 1 3 4 7 9 10 | | | 11 = 11: 0 |
13th chords, diamorphic scales (Scale Degrees: 1234567) | ||
0 1 4 6 7 9 10 = 13b9#11, Ramapriya | | | 2 = 2: 0 |
0 2 3 5 6 9 11 = mM13#11 | | | 9 = 9: 0 |
0 2 3 6 8 9 11 = mM13#5#11 | | | 0 = 0: 0 |
Chord Type | Roots | |
Scale Degrees: 1223457 | ||
0 1 3 4 6 7 10 | | | 8 = 8: 0 |
Scale Degrees: 1223567 | ||
0 1 3 4 7 9 10 | | | 11 = 11: 0 |
13th chords, diamorphic scales (Scale Degrees: 1234567) | ||
0 1 4 6 7 9 10 = 13b9#11, Ramapriya | | | 2 = 2: 0 |
0 2 3 5 6 9 11 = mM13#11 | | | 9 = 9: 0 |
0 2 3 6 8 9 11 = mM13#5#11 | | | 0 = 0: 0 |
Scale Degrees: 12223457 | ||
0 1 2 3 4 6 7 10 | | | 8 = 8: 0 |
Scale Degrees: 12223567 | ||
0 1 2 3 4 7 9 10 | | | 11 = 11: 0 |
Scale Degrees: 12234457 | ||
0 1 3 4 5 6 7 10 | | | 8 = 8: 0 |
diamorphic with supplementary 2nd (Scale Degrees: 12234567) | ||
0 1 2 4 5 7 8 11 | | | 7 = 7: 0 |
0 1 2 4 6 7 9 10 | | | 2 = 2: 0 |
0 1 3 4 5 7 9 10 | | | 11 = 11: 0 |
0 1 3 4 6 7 8 10 | | | 8 = 8: 0 |
0 1 3 4 6 7 9 10 = dim. scale, Octatonic | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 3 4 6 7 10 11 | | | 8 = 8: 0 |
Scale Degrees: 12235667 | ||
0 1 3 4 7 8 9 10 = ultraphrygian | | | 11 = 11: 0 |
0 1 3 4 7 9 10 11 | | | 11 = 11: 0 |
Scale Degrees: 12245667 | ||
0 1 2 5 7 8 10 11 | | | 1 = 1: 0 |
Scale Degrees: 12344566 | ||
0 2 3 5 6 7 8 9 | | | 6 = 6: 0 |
diamorphic with supplementary 4th (Scale Degrees: 12344567) | ||
0 1 4 5 6 7 9 10 | | | 2 = 2: 0 |
0 2 3 5 6 7 9 11 | | | 9 = 9: 0 |
0 2 3 5 6 8 9 11 = dim. scale, Octatonic | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
diamorphic with supplementary 6th (Scale Degrees: 12345667) | ||
0 1 4 6 7 8 9 10 | | | 2 = 2: 0 |
0 1 4 6 7 9 10 11 | | | 2 = 2: 0 |
0 2 3 6 7 8 9 11 | | | 0 = 0: 0 |
0 2 4 5 7 8 10 11 = Charukesi | | | 4 = 4: 0 |
Scale Degrees: 13445667 | ||
0 3 5 6 7 8 9 11 | | | 3 = 3: 0 |
Scale Degrees: 122334457 | ||
0 1 2 3 4 5 6 7 10 | | | 8 = 8: 0 |
diamorphic with supplementary 2nd, 3rd (Scale Degrees: 122334567) | ||
0 1 2 3 4 5 7 8 11 | | | 7 = 7: 0 |
0 1 2 3 4 5 7 9 10 | | | 11 = 11: 0 |
0 1 2 3 4 6 7 8 10 | | | 8 = 8: 0 |
0 1 2 3 4 6 7 9 10 | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 2 3 4 6 7 10 11 | | | 8 = 8: 0 |
Scale Degrees: 122335667 | ||
0 1 2 3 4 7 8 9 10 | | | 11 = 11: 0 |
0 1 2 3 4 7 9 10 11 | | | 11 = 11: 0 |
Scale Degrees: 122344566 | ||
0 1 2 3 5 6 7 8 9 | | | 6 = 6: 0 |
0 2 3 4 5 6 7 8 9 | | | 6 = 6: 0 |
diamorphic with supplementary 2nd, 4th (Scale Degrees: 122344567) | ||
0 1 2 3 5 6 7 9 11 | | | 9 = 9: 0 |
0 1 2 3 5 6 8 9 11 | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 1 2 4 5 6 7 8 11 | | | 7 = 7: 0 |
0 1 2 4 5 6 7 9 10 = 12569A & dom. 7 | | | 2 = 2: 0 |
0 1 3 4 5 6 7 8 10 | | | 8 = 8: 0 |
0 1 3 4 5 6 7 9 10 | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 3 4 5 6 7 10 11 | | | 8 = 8: 0 |
0 2 3 4 5 6 7 9 11 = lydian & mel. min. | | | 9 = 9: 0 |
diamorphic with supplementary 2nd, 6th (Scale Degrees: 122345667) | ||
0 1 2 3 5 7 8 10 11 = phrygian & harm. min. | | | 1 = 1: 0 |
0 1 2 3 6 7 8 9 11 | | | 0 = 0: 0 |
0 1 2 4 5 7 8 9 11 | | | 7 = 7: 0 |
0 1 2 4 5 7 8 10 11 | | | 1 4 7 10 = 1: 0 3 6 9 = 4: 0 3 6 9 = 7: 0 3 6 9 = 10: 0 3 6 9 |
0 1 2 4 6 7 8 9 10 | | | 2 = 2: 0 |
0 1 2 4 6 7 9 10 11 | | | 2 = 2: 0 |
0 1 3 4 5 7 8 9 10 = 014589 & min. pentat. | | | 11 = 11: 0 |
0 1 3 4 5 7 9 10 11 | | | 11 = 11: 0 |
0 1 3 4 6 7 8 9 10 | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 3 4 6 7 8 10 11 | | | 8 = 8: 0 |
0 1 3 4 6 7 9 10 11 | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 2 3 4 5 6 9 10 11 | | | 9 = 9: 0 |
0 2 3 4 5 7 8 10 11 = aeolean & aug. scale, 03478B & bebop min. | | | 4 = 4: 0 |
0 2 3 4 6 7 8 9 11 = lydian & aug. scale | | | 0 = 0: 0 |
Scale Degrees: 122356677 | ||
0 1 3 4 7 8 9 10 11 | | | 11 = 11: 0 |
Scale Degrees: 122456677 | ||
0 1 2 5 7 8 9 10 11 = Kanakangi | | | 1 = 1: 0 |
diamorphic with supplementary 4th, 6th (Scale Degrees: 123445667) | ||
0 1 3 5 6 7 8 9 11 | | | 3 = 3: 0 |
0 1 4 5 6 7 8 9 10 | | | 2 = 2: 0 |
0 2 3 5 6 7 8 9 10 | | | 6 = 6: 0 |
0 2 3 5 6 7 8 9 11 | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 2 3 5 6 8 9 10 11 | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
diamorphic with supplementary 4th, 7th (Scale Degrees: 123445677) | ||
0 1 4 5 6 7 9 10 11 | | | 2 = 2: 0 |
0 2 3 5 6 7 9 10 11 = 2367AB & mel. min. | | | 9 = 9: 0 |
0 2 4 5 6 7 8 10 11 | | | 4 = 4: 0 |
0 3 4 5 6 7 8 9 11 | | | 3 = 3: 0 |
diamorphic with supplementary 6th, 7th (Scale Degrees: 123456677) | ||
0 1 4 6 7 8 9 10 11 | | | 2 = 2: 0 |
0 2 3 6 7 8 9 10 11 | | | 0 = 0: 0 |
0 2 4 5 7 8 9 10 11 | | | 4 = 4: 0 |
Scale Degrees: 134456667 | ||
0 3 5 6 7 8 9 10 11 | | | 3 = 3: 0 |
chromatic decachord (Scale Degrees: 1223344566) | ||
0 1 2 3 4 5 6 7 8 9 = 1st 10 chromatics | | | 6 = 6: 0 |
diamorphic with supplementary 2nd, 3rd, 4th (Scale Degrees: 1223344567) | ||
0 1 2 3 4 5 6 7 8 10 = whole tone & phrygian | | | 8 = 8: 0 |
0 1 2 3 4 5 6 7 8 11 | | | 7 = 7: 0 |
0 1 2 3 4 5 6 7 9 10 = auxdim. scale & dorian | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 2 3 4 5 6 7 9 11 | | | 9 = 9: 0 |
0 1 2 3 4 5 6 7 10 11 | | | 8 = 8: 0 |
diamorphic with supplementary 2nd, 3rd, 6th (Scale Degrees: 1223345667) | ||
0 1 2 3 4 5 6 8 9 10 | | | 6 = 6: 0 |
0 1 2 3 4 5 6 8 9 11 | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 1 2 3 4 5 6 8 10 11 | | | 10 = 10: 0 |
0 1 2 3 4 5 6 9 10 11 | | | 9 = 9: 0 |
0 1 2 3 4 5 7 8 9 10 = mixophrygian | | | 11 = 11: 0 |
0 1 2 3 4 5 7 8 9 11 = 014589 & mel. min. | | | 7 = 7: 0 |
0 1 2 3 4 5 7 8 10 11 | | | 1 4 7 10 = 1: 0 3 6 9 = 4: 0 3 6 9 = 7: 0 3 6 9 = 10: 0 3 6 9 |
0 1 2 3 4 5 7 9 10 11 | | | 11 = 11: 0 |
0 1 2 3 4 5 8 9 10 11 | | | 10 = 10: 0 |
0 1 2 3 4 6 7 8 9 10 | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 2 3 4 6 7 8 9 11 = 10 in 5ths | | | 0 = 0: 0 |
0 1 2 3 4 6 7 8 10 11 | | | 8 = 8: 0 |
0 1 2 3 4 6 7 9 10 11 = auxdim. scale & lydian | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 2 3 4 6 8 9 10 11 | | | 0 = 0: 0 |
Scale Degrees: 1223356667 | ||
0 1 2 3 4 7 8 9 10 11 | | | 11 = 11: 0 |
diamorphic with supplementary 2nd, 4th, 6th (Scale Degrees: 1223445667) | ||
0 1 2 3 5 6 7 8 9 10 = locridorian | | | 6 = 6: 0 |
0 1 2 3 5 6 7 8 9 11 | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 1 2 3 5 6 7 8 10 11 = locrian & harm. min. | | | 1 = 1: 0 |
0 1 2 3 5 6 7 9 10 11 = 12569A & mel. min. | | | 9 = 9: 0 |
0 1 2 3 5 6 8 9 10 11 = dim. scale & locrian | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 1 2 4 5 6 7 8 9 10 | | | 2 = 2: 0 |
0 1 2 4 5 6 7 8 9 11 | | | 7 = 7: 0 |
0 1 2 4 5 6 7 8 10 11 | | | 1 4 7 10 = 1: 0 3 6 9 = 4: 0 3 6 9 = 7: 0 3 6 9 = 10: 0 3 6 9 |
0 1 2 4 5 6 7 9 10 11 = 12569A & bebop maj. | | | 2 = 2: 0 |
0 1 2 4 5 6 8 9 10 11 | | | 10 = 10: 0 |
0 1 3 4 5 6 7 8 9 10 = auxdim. scale & phrygian, 014589 & auxdim. scale | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 1 3 4 5 6 7 8 9 11 | | | 3 = 3: 0 |
0 1 3 4 5 6 7 8 10 11 = locrian & aug. scale | | | 8 = 8: 0 |
0 1 3 4 5 6 7 9 10 11 | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 2 3 4 5 6 7 8 9 10 | | | 6 = 6: 0 |
0 2 3 4 5 6 7 8 9 11 = lydian & harm. min. | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 2 3 4 5 6 7 8 10 11 | | | 4 = 4: 0 |
0 2 3 4 5 6 7 9 10 11 = dorelydian, 2367AB & bebop maj. | | | 9 = 9: 0 |
0 2 3 4 5 6 8 9 10 11 | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
diamorphic with supplementary 2nd, 6th, 7th (Scale Degrees: 1223456677) | ||
0 1 2 3 5 7 8 9 10 11 = phrygian & mel. min. | | | 1 = 1: 0 |
0 1 2 3 6 7 8 9 10 11 | | | 0 = 0: 0 |
0 1 2 4 5 7 8 9 10 11 = 014589 & bebop maj., Span. Gypsy & ionian | | | 1 4 7 10 = 1: 0 3 6 9 = 4: 0 3 6 9 = 7: 0 3 6 9 = 10: 0 3 6 9 |
0 1 2 4 6 7 8 9 10 11 | | | 2 = 2: 0 |
0 1 3 4 5 6 8 9 10 11 = 10 in 4ths | | | 3 = 3: 0 |
0 1 3 4 5 7 8 9 10 11 | | | 11 = 11: 0 |
0 1 3 4 6 7 8 9 10 11 = 03478B & auxdim. scale | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 2 3 4 5 7 8 9 10 11 = ioaeolean, mixolydian & harm. min. | | | 4 = 4: 0 |
0 2 3 4 6 7 8 9 10 11 | | | 0 = 0: 0 |
Scale Degrees: 1224456677 | ||
0 1 2 5 6 7 8 9 10 11 | | | 1 = 1: 0 |
diamorphic with supplementary 4th, 6th, 7th (Scale Degrees: 1234456677) | ||
0 1 3 5 6 7 8 9 10 11 | | | 3 = 3: 0 |
0 1 4 5 6 7 8 9 10 11 | | | 2 = 2: 0 |
0 2 3 5 6 7 8 9 10 11 = dim. scale & dorian | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 2 4 5 6 7 8 9 10 11 = whole tone & ionian | | | 4 = 4: 0 |
0 3 4 5 6 7 8 9 10 11 | | | 3 = 3: 0 |
chromatic unidecachord = diamorphic with supplementary 2nd, 3rd, 4th, 6th (Scale Degrees: 12233445667) | ||
0 1 2 3 4 5 6 7 8 9 10 = mixolocrian, 1st 11 chromatics | | | 2 5 6 8 11 = 2: 0 3 4 6 9 = 5: 0 1 3 6 9 = 6: 0 2 5 8 11 = 8: 0 3 6 9 10 = 11: 0 3 6 7 9 |
0 1 2 3 4 5 6 7 8 9 11 | | | 0 3 6 7 9 = 0: 0 3 6 7 9 = 3: 0 3 4 6 9 = 6: 0 1 3 6 9 = 7: 0 2 5 8 11 = 9: 0 3 6 9 10 |
0 1 2 3 4 5 6 7 8 10 11 | | | 1 4 7 8 10 = 1: 0 3 6 7 9 = 4: 0 3 4 6 9 = 7: 0 1 3 6 9 = 8: 0 2 5 8 11 = 10: 0 3 6 9 10 |
0 1 2 3 4 5 6 7 9 10 11 = auxdim. scale & ionian | | | 2 5 8 9 11 = 2: 0 3 6 7 9 = 5: 0 3 4 6 9 = 8: 0 1 3 6 9 = 9: 0 2 5 8 11 = 11: 0 3 6 9 10 |
diamorphic with supplementary 2nd, 3rd, 6th, 7th (Scale Degrees: 12233456677) | ||
0 1 2 3 4 5 6 8 9 10 11 = 11 in 4ths | | | 0 3 6 9 10 = 0: 0 3 6 9 10 = 3: 0 3 6 7 9 = 6: 0 3 4 6 9 = 9: 0 1 3 6 9 = 10: 0 2 5 8 11 |
0 1 2 3 4 5 7 8 9 10 11 = iophrygian, Spanish Gypsy & dorian, consonant-11 | | | 1 4 7 10 11 = 1: 0 3 6 9 10 = 4: 0 3 6 7 9 = 7: 0 3 4 6 9 = 10: 0 1 3 6 9 = 11: 0 2 5 8 11 |
0 1 2 3 4 6 7 8 9 10 11 = 11 in 5ths, most stable 11 chord type | | | 0 2 5 8 11 = 0: 0 2 5 8 11 = 2: 0 3 6 9 10 = 5: 0 3 6 7 9 = 8: 0 3 4 6 9 = 11: 0 1 3 6 9 |
diamorphic with supplementary 2nd, 4th, 6th, 7th (Scale Degrees: 12234456677) | ||
0 1 2 3 5 6 7 8 9 10 11 = locrian & mel. min., dim. & phrygian | | | 0 1 3 6 9 = 0: 0 1 3 6 9 = 1: 0 2 5 8 11 = 3: 0 3 6 9 10 = 6: 0 3 6 7 9 = 9: 0 3 4 6 9 |
0 1 2 4 5 6 7 8 9 10 11 = Northern lights chord | | | 1 2 4 7 10 = 1: 0 1 3 6 9 = 2: 0 2 5 8 11 = 4: 0 3 6 9 10 = 7: 0 3 6 7 9 = 10: 0 3 4 6 9 |
0 1 3 4 5 6 7 8 9 10 11 | | | 2 3 5 8 11 = 2: 0 1 3 6 9 = 3: 0 2 5 8 11 = 5: 0 3 6 9 10 = 8: 0 3 6 7 9 = 11: 0 3 4 6 9 |
0 2 3 4 5 6 7 8 9 10 11 = aeolydian, whole tone & dorian | | | 0 3 4 6 9 = 0: 0 3 4 6 9 = 3: 0 1 3 6 9 = 4: 0 2 5 8 11 = 6: 0 3 6 9 10 = 9: 0 3 6 7 9 |
chromatic Scale = diamorphic with supplementary 2nd, 3rd, 4th, 6th, 7th (Scale Degrees: 122334456677) | ||
0 1 2 3 4 5 6 7 8 9 10 11 = chromatic, dodecachord, 12 in 4ths, 12 in 5ths | | | 0 1 2 3 4 5 6 7 8 9 10 11 = 0: 0 1 2 3 4 5 6 7 8 9 10 11 = 1: 0 1 2 3 4 5 6 7 8 9 10 11 = 2: 0 1 2 3 4 5 6 7 8 9 10 11 = 3: 0 1 2 3 4 5 6 7 8 9 10 11 = 4: 0 1 2 3 4 5 6 7 8 9 10 11 = 5: 0 1 2 3 4 5 6 7 8 9 10 11 = 6: 0 1 2 3 4 5 6 7 8 9 10 11 = 7: 0 1 2 3 4 5 6 7 8 9 10 11 = 8: 0 1 2 3 4 5 6 7 8 9 10 11 = 9: 0 1 2 3 4 5 6 7 8 9 10 11 = 10: 0 1 2 3 4 5 6 7 8 9 10 11 = 11: 0 1 2 3 4 5 6 7 8 9 10 11 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 6 7 | 2 8 | 2:0 6 | 2 3 8 9 | 2:0 1 6 7 | 0 6 11 | 2 8 | 53 |
0 2 3 6 8 9 11 | 0 1 6 7 | 2 8 | 2:0 6 | 2 3 8 9 | 2:0 1 6 7 | 0 6 11 | 2 3 8 9 | 53 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 4 6 | 2 8 | 2:0 6 | 0 2 6 8 | 2:0 4 6 10 | 3 9 11 | 2 8 | 67 |
0 2 3 6 8 9 11 | 0 4 6 10 | 2 8 | 2:0 6 | 0 2 6 8 | 2:0 4 6 10 | 3 9 11 | 0 2 6 8 | 67 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 3 6 9 | 0 3 6 9 | 0:0 3 6 9 | 0 3 6 9 | 0:0 3 6 9 | 2 8 11 | 0 3 6 9 | 69 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 1 3 | 8 11 | 8:0 3 | 0 2 8 9 11 | 2:0 6 7 9 10 | 3 6 | 11 | 98 |
0 2 3 6 8 9 11 | 0 2 11 | 0 9 | 9:0 3 | 0 2 8 9 11 | 2:0 6 7 9 10 | 3 6 | 11 | 98 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 3 4 | 8 11 | 8:0 3 | 0 2 3 8 11 | 8:0 3 4 6 7 | 6 9 | 11 | 101 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 3 10 | 8 11 | 8:0 3 | 2 6 8 9 11 | 11:0 3 7 9 10 | 0 3 | 11 | 111 |
0 2 3 6 8 9 11 | 0 7 9 | 2 11 | 11:0 3 | 2 6 8 9 11 | 11:0 3 7 9 10 | 0 3 | 11 | 111 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 3 7 | 8 11 | 8:0 3 | 2 3 6 8 11 | 11:0 3 4 7 9 | 0 9 | 11 | 122 |
0 2 3 6 8 9 11 | 0 4 9 | 2 11 | 11:0 3 | 2 3 6 8 11 | 11:0 3 4 7 9 | 0 9 | 11 | 122 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 1 | 2 8 11 | 11:0 3 9 | 0 2 3 8 9 11 | 8:0 1 3 4 6 7 | 6 | '' | 190 |
0 2 3 6 8 9 11 | 0 11 | 0 3 9 | 0:0 3 9 | 0 2 3 8 9 11 | 8:0 1 3 4 6 7 | 6 | '' | 190 |
0 2 3 6 8 9 11 | 0 1 3 4 | 8 11 | 8:0 3 | 0 2 3 8 9 11 | 8:0 1 3 4 6 7 | 6 | 0 11 | 190 |
0 2 3 6 8 9 11 | 0 2 3 11 | 0 9 | 9:0 3 | 0 2 3 8 9 11 | 8:0 1 3 4 6 7 | 6 | 0 11 | 190 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 2 | 0 6 9 | 9:0 3 9 | 0 2 6 8 9 11 | 2:0 4 6 7 9 10 | 3 | '' | 193 |
0 2 3 6 8 9 11 | 0 10 | 2 8 11 | 11:0 3 9 | 0 2 6 8 9 11 | 2:0 4 6 7 9 10 | 3 | '' | 193 |
0 2 3 6 8 9 11 | 0 2 3 5 | 6 9 | 6:0 3 | 0 2 6 8 9 11 | 2:0 4 6 7 9 10 | 3 | 9 11 | 193 |
0 2 3 6 8 9 11 | 0 1 3 10 | 8 11 | 8:0 3 | 0 2 6 8 9 11 | 2:0 4 6 7 9 10 | 3 | 9 11 | 193 |
0 2 3 6 8 9 11 | 0 2 9 11 | 0 9 | 9:0 3 | 0 2 6 8 9 11 | 2:0 4 6 7 9 10 | 3 | 9 11 | 193 |
0 2 3 6 8 9 11 | 0 7 9 10 | 2 11 | 11:0 3 | 0 2 6 8 9 11 | 2:0 4 6 7 9 10 | 3 | 9 11 | 193 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 4 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 11 | 11:0 1 3 4 7 9 | 9 | '' | 195 |
0 2 3 6 8 9 11 | 0 8 | 0 3 6 | 3:0 3 9 | 0 2 3 6 8 11 | 11:0 1 3 4 7 9 | 9 | '' | 195 |
0 2 3 6 8 9 11 | 0 3 4 7 | 8 11 | 8:0 3 | 0 2 3 6 8 11 | 11:0 1 3 4 7 9 | 9 | 3 11 | 195 |
0 2 3 6 8 9 11 | 0 1 4 9 | 2 11 | 11:0 3 | 0 2 3 6 8 11 | 11:0 1 3 4 7 9 | 9 | 3 11 | 195 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 5 | 3 6 9 | 6:0 3 9 | 2 3 6 8 9 11 | 11:0 3 4 7 9 10 | 0 | '' | 208 |
0 2 3 6 8 9 11 | 0 7 | 2 8 11 | 11:0 3 9 | 2 3 6 8 9 11 | 11:0 3 4 7 9 10 | 0 | '' | 208 |
0 2 3 6 8 9 11 | 0 4 7 9 | 2 11 | 11:0 3 | 2 3 6 8 9 11 | 11:0 3 4 7 9 10 | 0 | 6 11 | 208 |
0 2 3 6 8 9 11 | 0 3 7 10 | 8 11 | 8:0 3 | 2 3 6 8 9 11 | 11:0 3 4 7 9 10 | 0 | 6 11 | 208 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 0 2 3 6 8 9 | 213 |
0 2 3 6 8 9 11 | 0 4 6 7 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 2 8 | 213 |
0 2 3 6 8 9 11 | 0 3 5 11 | 3 9 | 3:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 2 8 | 213 |
0 2 3 6 8 9 11 | 0 6 7 10 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 2 8 | 213 |
0 2 3 6 8 9 11 | 0 1 4 6 7 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 2 3 8 9 | 213 |
0 2 3 6 8 9 11 | 0 1 4 6 10 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 0 2 6 8 | 213 |
0 2 3 6 8 9 11 | 0 1 6 7 10 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 2 3 8 9 | 213 |
0 2 3 6 8 9 11 | 0 4 6 7 10 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 0 2 6 8 | 213 |
0 2 3 6 8 9 11 | 0 1 4 6 7 10 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 11 | 0 2 3 6 8 9 | 213 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 8 9 11 | 0 3 | 0 3 6 8 9 11 | 8:0 1 3 4 7 10 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 11 | 277 |
0 2 3 6 8 9 11 | 0 9 | 0 2 3 6 9 11 | 11:0 1 3 4 7 10 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 11 | 277 |
0 2 3 6 8 9 11 | 0 1 4 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 | 277 |
0 2 3 6 8 9 11 | 0 2 3 | 0 6 9 | 9:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 9 | 277 |
0 2 3 6 8 9 11 | 0 1 7 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 3 9 | 277 |
0 2 3 6 8 9 11 | 0 3 5 | 3 6 9 | 6:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 6 9 | 277 |
0 2 3 6 8 9 11 | 0 3 6 | 0 3 6 8 9 | 8:0 1 4 7 10 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 4 7 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 3 6 | 277 |
0 2 3 6 8 9 11 | 0 3 9 | 0 3 6 9 11 | 11:0 1 4 7 10 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 3 11 | 0 3 9 | 0:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 | 277 |
0 2 3 6 8 9 11 | 0 4 10 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 6 | 277 |
0 2 3 6 8 9 11 | 0 7 10 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 6 9 | 277 |
0 2 3 6 8 9 11 | 0 1 3 7 | 8 11 | 8:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 11 | 277 |
0 2 3 6 8 9 11 | 0 1 4 7 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 2 3 6 | 0 6 9 | 9:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 1 4 10 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 3 4 10 | 8 11 | 8:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 11 | 277 |
0 2 3 6 8 9 11 | 0 1 7 9 | 2 11 | 11:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 11 | 277 |
0 2 3 6 8 9 11 | 0 1 7 10 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 3 5 6 | 3 6 9 | 6:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 3 6 11 | 0 3 9 | 0:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 4 7 10 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 3 9 11 | 0 3 9 | 0:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 4 9 10 | 2 11 | 11:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 11 | 277 |
0 2 3 6 8 9 11 | 0 1 3 4 7 | 8 11 | 8:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 11 | 277 |
0 2 3 6 8 9 11 | 0 1 3 4 10 | 8 11 | 8:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 9 11 | 277 |
0 2 3 6 8 9 11 | 0 2 3 5 6 | 6 9 | 6:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 9 11 | 277 |
0 2 3 6 8 9 11 | 0 1 4 7 9 | 2 11 | 11:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 3 6 11 | 277 |
0 2 3 6 8 9 11 | 0 1 3 7 10 | 8 11 | 8:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 6 9 11 | 277 |
0 2 3 6 8 9 11 | 0 1 4 7 10 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 | 277 |
0 2 3 6 8 9 11 | 0 2 3 6 11 | 0 9 | 9:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 11 | 277 |
0 2 3 6 8 9 11 | 0 3 4 7 10 | 8 11 | 8:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 3 6 11 | 277 |
0 2 3 6 8 9 11 | 0 1 4 9 10 | 2 11 | 11:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 11 | 277 |
0 2 3 6 8 9 11 | 0 2 3 9 11 | 0 9 | 9:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 9 11 | 277 |
0 2 3 6 8 9 11 | 0 1 7 9 10 | 2 11 | 11:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 9 11 | 277 |
0 2 3 6 8 9 11 | 0 3 5 6 8 | 3 6 | 3:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 6 9 11 | 277 |
0 2 3 6 8 9 11 | 0 4 7 9 10 | 2 11 | 11:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 6 9 11 | 277 |
0 2 3 6 8 9 11 | 0 1 3 4 7 10 | 8 11 | 8:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 11 | 277 |
0 2 3 6 8 9 11 | 0 1 4 7 9 10 | 2 11 | 11:0 3 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 0 3 6 9 11 | 277 |