Chord Type | Roots | |
Unison (Scale Degrees: 1) | ||
0 = root, unison, octave | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
3rds / 10ths (Scale Degrees: 13) | ||
0 3 = aug. 2nd, min. 3rd, aug. 9th | | | 4 = 4: 0 |
0 4 = maj. 3rd, maj. 10th, dim. 4th | | | 0 = 0: 0 |
4ths / 11ths (Scale Degrees: 14) | ||
0 5 = 4th, 11th, 2 in 4ths | | | 7 = 7: 0 |
5ths / 12ths (Scale Degrees: 15) | ||
0 7 = 5th, 2 in 5ths | | | 0 = 0: 0 |
6ths / 13ths (Scale Degrees: 16) | ||
0 8 = aug. 5th, min. 6th, aug. 12th, min. 13th | | | 4 = 4: 0 |
0 9 = maj. 6th, maj. 13th, dim. 7th | | | 7 = 7: 0 |
Triads (Scale Degrees: 135) | ||
0 4 7 = M = major | | | 0 = 0: 0 |
Chord Type | Roots | |
Triads (Scale Degrees: 135) | ||
0 4 7 = M = major | | | 0 = 0: 0 |
Add 9 Chords (Scale Degrees: 1235) | ||
0 1 4 7 = M add b9 | | | 0 = 0: 0 |
0 2 4 7 = add9 , Mu chord | | | 0 = 0: 0 |
0 3 4 7 = add #9, maj-min chord | | | 0 = 0: 0 |
0 3 4 8 = aug. add #9 | | | 8 = 8: 0 |
6/9 chord no 5th (Scale Degrees: 1236) | ||
0 1 4 9 | | | 9 = 9: 0 |
9th chords no 3rd (Scale Degrees: 1257) | ||
0 2 7 11 = M9 no 3rd, mM9 no 3rd | | | 7 = 7: 0 |
Add 11 Chords (Scale Degrees: 1345) | ||
0 4 5 7 = M add 11 | | | 0 = 0: 0 |
0 4 6 7 = Madd#11, Jetsons, all-int | | | 0 = 0: 0 |
6th Chords (Scale Degrees: 1356) | ||
0 3 7 8 = mb6 | | | 8 = 8: 0 |
0 4 7 8 = Mb6 | | | 0 = 0: 0 |
0 4 7 9 = 6 | | | 0 = 0: 0 |
7th Chords (Scale Degrees: 1357) | ||
0 3 6 11 = mM7b5, dim. maj. 7th chord | | | 11 = 11: 0 |
0 3 7 10 = m7 | | | 3 = 3: 0 |
0 4 7 10 = 7, German aug. 6th chord | | | 0 = 0: 0 |
0 4 7 11 = M7 | | | 0 = 0: 0 |
0 4 8 11 = M7#5 | | | 4 = 4: 0 |
Scale Degrees: 1456 | ||
0 5 7 9 | | | 5 = 5: 0 |
Scale Degrees: 12235 | ||
0 1 2 4 7 | | | 0 = 0: 0 |
0 1 3 4 7 | | | 0 = 0: 0 |
0 1 3 4 8 = Farben chord | | | 8 = 8: 0 |
0 2 3 4 7 | | | 0 = 0: 0 |
0 2 3 4 8 | | | 8 = 8: 0 |
Scale Degrees: 12236 | ||
0 1 2 4 9 | | | 9 = 9: 0 |
0 1 3 4 9 | | | 9 = 9: 0 |
Scale Degrees: 12257 | ||
0 1 2 7 11 | | | 7 = 7: 0 |
1st 5 notes of diamorphic scale (Scale Degrees: 12345) | ||
0 1 4 5 7 = phrygian maj. pentachord | | | 0 = 0: 0 |
0 1 4 6 7 | | | 0 = 0: 0 |
0 2 4 5 7 = maj. pentachord | | | 0 = 0: 0 |
0 2 4 6 7 = lydian pentachord | | | 0 = 0: 0 |
0 3 4 5 7 | | | 0 = 0: 0 |
0 3 4 6 7 | | | 0 = 0: 0 |
6/9 chords (Scale Degrees: 12356) | ||
0 1 3 7 8 | | | 8 = 8: 0 |
0 1 4 7 8 = Bridge chord | | | 0 = 0: 0 |
0 1 4 7 9 = Elektra chord | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 2 3 7 8 = min. Hirajoshi, tizita min. | | | 8 = 8: 0 |
0 2 4 7 8 | | | 0 = 0: 0 |
0 2 4 7 9 = maj. pent., 5 in 5ths, ryo, tizita maj. | | | 0 = 0: 0 |
0 3 4 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 3 4 7 9 = slendro | | | 0 = 0: 0 |
9th chords (Scale Degrees: 12357) | ||
0 1 3 6 10 = m7b5b9 | | | 6 = 6: 0 |
0 1 3 6 11 = mM7b5b9 | | | 11 = 11: 0 |
0 1 3 7 10 = m7b9 | | | 3 = 3: 0 |
0 1 4 6 10 = 7b5b9 | | | 6 = 6: 0 |
0 1 4 7 10 = 7b9 | | | 0 = 0: 0 |
0 1 4 7 11 = M7b9 | | | 0 = 0: 0 |
0 1 4 8 11 = M7#5b9 | | | 4 = 4: 0 |
0 2 3 6 11 = mM9b5 | | | 11 = 11: 0 |
0 2 3 7 10 = m9 | | | 3 = 3: 0 |
0 2 3 7 11 = mM9, Farben chord | | | 7 = 7: 0 |
0 2 4 7 10 = 9 | | | 0 = 0: 0 |
0 2 4 7 11 = M9 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 4 8 11 = M9#5 | | | 4 = 4: 0 |
0 3 4 6 11 = M7b5#9 | | | 11 = 11: 0 |
0 3 4 7 10 = 7#9 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 7 11 = M7#9 | | | 0 = 0: 0 |
0 3 4 8 10 = 7#5#9 | | | 8 = 8: 0 |
0 3 4 8 11 = M7#5#9 | | | 4 8 = 4: 0 4 = 8: 0 8 |
13th chords no 5th no 11th (Scale Degrees: 12367) | ||
0 1 4 9 10 = 13b9 no 5th no 11th | | | 9 = 9: 0 |
0 1 4 9 11 = M13b9 no 5th no 11th | | | 9 = 9: 0 |
Scale Degrees: 12456 | ||
0 1 5 7 8 = In, Sakura pent., kumoi joshi | | | 1 = 1: 0 |
0 1 5 7 9 | | | 5 = 5: 0 |
0 2 5 7 9 = ritsu, yo desc., Thai2, ambassel maj. | | | 5 = 5: 0 |
0 2 6 7 9 = Javanese pelog pathet barang | | | 2 = 2: 0 |
11th chords no 3rd (Scale Degrees: 12457) | ||
0 1 6 7 10 | | | 6 = 6: 0 |
0 2 5 7 10 = 11 no 3rd, yo asc., Thai3, slendro, yematebela wofe | | | 10 = 10: 0 |
0 2 5 7 11 = M11 no 3rd, batti maj. | | | 7 = 7: 0 |
0 2 6 7 11 | | | 7 = 7: 0 |
13th chords no 3rd no 11th (Scale Degrees: 12567) | ||
0 2 7 8 11 | | | 7 = 7: 0 |
0 2 7 9 11 | | | 7 = 7: 0 |
0 2 7 10 11 | | | 7 = 7: 0 |
Scale Degrees: 13445 | ||
0 4 5 6 7 | | | 0 = 0: 0 |
Scale Degrees: 13456 | ||
0 3 5 6 8 | | | 8 = 8: 0 |
0 3 5 7 8 | | | 8 = 8: 0 |
0 3 5 7 9 | | | 5 = 5: 0 |
0 3 6 7 8 | | | 8 = 8: 0 |
0 4 5 7 8 | | | 0 = 0: 0 |
0 4 5 7 9 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 6 7 8 | | | 0 = 0: 0 |
0 4 6 7 9 | | | 0 = 0: 0 |
11th Chords no 9th (Scale Degrees: 13457) | ||
0 3 5 7 10 = min. pent., m11 no 9th, minyo, batti min., Thai4 | | | 3 = 3: 0 |
0 3 6 7 10 = m7#11 no 9th, batti min. #4 | | | 3 = 3: 0 |
0 3 6 7 11 = mM7#11 no 9th, batti min. 4/7# | | | 11 = 11: 0 |
0 4 5 7 10 = 11 no 9th | | | 0 = 0: 0 |
0 4 5 7 11 = M11 no 9th, ryukuan | | | 0 = 0: 0 |
0 4 6 7 10 = 7#11 no 9th | | | 0 = 0: 0 |
0 4 6 7 11 = M#11 no 9th lydian chord, batti maj. #4, Hiraj. | | | 0 = 0: 0 |
Scale Degrees: 13566 | ||
0 3 7 8 9 | | | 8 = 8: 0 |
0 4 7 8 9 | | | 0 = 0: 0 |
7/6 Chords (Scale Degrees: 13567) | ||
0 3 6 10 11 = mM7b5#6 | | | 11 = 11: 0 |
0 3 7 8 10 = m7/b6 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 7 8 11 = mM7/b6 | | | 8 = 8: 0 |
0 3 7 9 10 = m7/6 | | | 3 = 3: 0 |
0 3 7 10 11 = mM7/#6 | | | 3 = 3: 0 |
0 4 7 8 10 = 7/b6 | | | 0 = 0: 0 |
0 4 7 8 11 = M7/b6 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 7 9 10 = 7/6, boogie woogie | | | 0 = 0: 0 |
0 4 7 9 11 = M7/6 | | | 0 = 0: 0 |
0 4 7 10 11 = M7#6 | | | 0 = 0: 0 |
0 4 8 10 11 = M7#5/#6 | | | 4 = 4: 0 |
Scale Degrees: 14566 | ||
0 5 7 8 9 | | | 5 = 5: 0 |
13th chords no 3rd no 9th (Scale Degrees: 14567) | ||
0 5 7 9 10 | | | 5 = 5: 0 |
0 5 7 9 11 | | | 5 = 5: 0 |
Scale Degrees: 122335 | ||
0 1 2 3 4 7 | | | 0 = 0: 0 |
0 1 2 3 4 8 | | | 8 = 8: 0 |
Scale Degrees: 122336 | ||
0 1 2 3 4 9 | | | 9 = 9: 0 |
Scale Degrees: 122345 | ||
0 1 2 4 5 7 | | | 0 = 0: 0 |
0 1 2 4 6 7 | | | 0 = 0: 0 |
0 1 3 4 5 7 | | | 0 = 0: 0 |
0 1 3 4 6 7 = Istrian | | | 0 = 0: 0 |
0 2 3 4 5 7 = type B ACH prime | | | 0 = 0: 0 |
0 2 3 4 6 7 | | | 0 = 0: 0 |
Scale Degrees: 122347 | ||
0 1 2 3 5 10 | | | 10 = 10: 0 |
0 2 3 4 5 10 | | | 10 = 10: 0 |
Scale Degrees: 122356 | ||
0 1 2 3 7 8 | | | 8 = 8: 0 |
0 1 2 4 7 8 = all-tri hex | | | 0 = 0: 0 |
0 1 2 4 7 9 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 2 4 8 9 | | | 9 = 9: 0 |
0 1 3 4 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 1 3 4 7 9 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 2 3 4 6 9 | | | 2 = 2: 0 |
0 2 3 4 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 2 3 4 7 9 = maj. blues | | | 0 = 0: 0 |
Scale Degrees: 122357 | ||
0 1 2 3 6 11 | | | 11 = 11: 0 |
0 1 2 3 7 10 | | | 3 = 3: 0 |
0 1 2 3 7 11 | | | 7 = 7: 0 |
0 1 2 4 7 10 | | | 0 = 0: 0 |
0 1 2 4 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 1 3 4 7 10 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 1 3 4 7 11 | | | 0 = 0: 0 |
0 1 3 4 8 10 | | | 8 = 8: 0 |
0 1 3 4 8 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
0 2 3 4 6 11 | | | 11 = 11: 0 |
0 2 3 4 7 10 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 2 3 4 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 3 4 8 10 | | | 8 = 8: 0 |
0 2 3 4 8 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 122367 | ||
0 1 2 4 9 10 | | | 9 = 9: 0 |
0 1 2 4 9 11 | | | 9 = 9: 0 |
0 1 3 4 9 10 | | | 9 = 9: 0 |
0 1 3 4 9 11 | | | 9 = 9: 0 |
Scale Degrees: 122456 | ||
0 1 2 5 7 9 | | | 5 = 5: 0 |
0 1 2 6 7 9 | | | 2 = 2: 0 |
Scale Degrees: 122457 | ||
0 1 2 5 7 10 | | | 10 = 10: 0 |
0 1 2 5 7 11 | | | 7 = 7: 0 |
0 1 2 6 7 10 | | | 6 = 6: 0 |
0 1 2 6 7 11 | | | 7 = 7: 0 |
Scale Degrees: 122567 | ||
0 1 2 6 10 11 | | | 6 = 6: 0 |
0 1 2 7 8 11 | | | 7 = 7: 0 |
0 1 2 7 9 11 | | | 7 = 7: 0 |
0 1 2 7 10 11 | | | 7 = 7: 0 |
Scale Degrees: 123445 | ||
0 1 4 5 6 7 | | | 0 = 0: 0 |
0 2 4 5 6 7 | | | 0 = 0: 0 |
0 3 4 5 6 7 | | | 0 = 0: 0 |
1st 6 notes of diamorphic scale = diamorphic scales no 7th (Scale Degrees: 123456) | ||
0 1 3 5 7 8 | | | 1 8 = 1: 0 7 = 8: 0 5 |
0 1 3 5 7 9 | | | 5 = 5: 0 |
0 1 3 6 7 8 | | | 8 = 8: 0 |
0 1 4 5 7 8 | | | 0 1 = 0: 0 1 = 1: 0 11 |
0 1 4 5 7 9 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 4 6 7 8 | | | 0 = 0: 0 |
0 1 4 6 7 9 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 2 3 5 6 8 | | | 8 = 8: 0 |
0 2 3 5 7 8 | | | 8 = 8: 0 |
0 2 3 5 7 9 | | | 5 = 5: 0 |
0 2 3 6 7 8 | | | 8 = 8: 0 |
0 2 3 6 7 9 = Bridge chord | | | 2 = 2: 0 |
0 2 4 5 7 8 | | | 0 = 0: 0 |
0 2 4 5 7 9 = type C ACH | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 2 4 6 7 8 | | | 0 = 0: 0 |
0 2 4 6 7 9 | | | 0 2 = 0: 0 2 = 2: 0 10 |
0 3 4 5 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 3 4 5 7 9 = scale of harmonics | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 3 4 6 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 3 4 6 7 9 | | | 0 = 0: 0 |
11th chords = diamorphic scales no 6th (Scale Degrees: 123457) | ||
0 1 3 5 7 10 = m11b9 | | | 3 = 3: 0 |
0 1 3 6 7 10 = m#11b9 | | | 3 6 = 3: 0 3 = 6: 0 9 |
0 1 3 6 7 11 = mM#11b9, all-tri hex | | | 11 = 11: 0 |
0 1 4 5 7 10 = 11b9 | | | 0 = 0: 0 |
0 1 4 5 7 11 = M11b9 | | | 0 = 0: 0 |
0 1 4 6 7 10 = M#11b9, Tritone scale, Petrushka | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 1 4 6 7 11 = 7#11b9 | | | 0 = 0: 0 |
0 1 4 6 8 10 = 7#5#11b9 | | | 6 = 6: 0 |
0 2 3 5 6 10 = m11b5 | | | 10 = 10: 0 |
0 2 3 5 6 11 = mM#11 | | | 11 = 11: 0 |
0 2 3 5 7 10 = m11 | | | 3 10 = 3: 0 7 = 10: 0 5 |
0 2 3 5 7 11 = mM11 | | | 7 = 7: 0 |
0 2 3 6 7 10 = m#11 | | | 3 = 3: 0 |
0 2 3 6 7 11 = mM#11 | | | 7 11 = 7: 0 4 = 11: 0 8 |
0 2 4 5 7 10 = 11 | | | 0 10 = 0: 0 10 = 10: 0 2 |
0 2 4 5 7 11 = M11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 4 6 7 10 = 7#11, alt. chord | | | 0 = 0: 0 |
0 2 4 6 7 11 = M7#11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 3 4 5 6 11 = M11b5#9 | | | 11 = 11: 0 |
0 3 4 5 7 10 = 11#9 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 5 7 11 = M11#9 | | | 0 = 0: 0 |
0 3 4 6 7 10 = 7#9#11 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 6 7 11 = M7#9#11 | | | 0 11 = 0: 0 11 = 11: 0 1 |
Scale Degrees: 123467 | ||
0 2 3 5 10 11 = mM#13 no 5 | | | 10 = 10: 0 |
0 2 4 5 10 11 = M#13 no 5 | | | 10 = 10: 0 |
Scale Degrees: 123566 | ||
0 1 3 7 8 9 | | | 8 = 8: 0 |
0 1 4 7 8 9 = Schoen. hex | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 2 3 7 8 9 | | | 8 = 8: 0 |
0 2 4 7 8 9 | | | 0 = 0: 0 |
0 3 4 7 8 9 | | | 0 8 = 0: 0 8 = 8: 0 4 |
13th chords no 11th = diamorphic scales no 4th (Scale Degrees: 123567) | ||
0 1 3 7 8 10 = mb13b9 no 11th | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 1 3 7 8 11 = mMb13b9 no 11th | | | 8 = 8: 0 |
0 1 3 7 9 10 = m13b9 no 11th | | | 3 = 3: 0 |
0 1 3 7 10 11 = mM#13b9 no 11th | | | 3 = 3: 0 |
0 1 4 7 8 10 = 7b13b9 no 11th | | | 0 = 0: 0 |
0 1 4 7 8 11 = Mb13b9 no 11th | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 1 4 7 9 10 = 13b9 no 11th | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 4 7 9 11 = M13b9 no 11th | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 4 7 10 11 = M#13b9 no 11th | | | 0 = 0: 0 |
0 1 4 8 10 11 = M#13#5b9 no 11th | | | 4 = 4: 0 |
0 2 3 7 8 10 = mb13 no 11th | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 2 3 7 8 11 = mMb13 no 11th | | | 7 8 = 7: 0 1 = 8: 0 11 |
0 2 3 7 9 10 = m13 no 11th | | | 3 = 3: 0 |
0 2 3 7 9 11 = mM 13 no 11th | | | 7 = 7: 0 |
0 2 3 7 10 11 = mM#13 no 11th | | | 3 7 = 3: 0 4 = 7: 0 8 |
0 2 3 8 10 11 = mM#13 no 11th | | | 8 = 8: 0 |
0 2 4 7 8 10 = 7b13 no 11th | | | 0 = 0: 0 |
0 2 4 7 8 11 = M7b13 no 11th | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 2 4 7 9 10 = 13 no 11th | | | 0 = 0: 0 |
0 2 4 7 9 11 = M13 no 11th, Guido hex., 6 in 5ths | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 4 7 10 11 = M#13 no 11th | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 4 8 9 11 = M13#5 no 11th | | | 4 = 4: 0 |
0 2 4 8 10 11 = M#13#5 no 11th | | | 4 = 4: 0 |
0 3 4 6 10 11 = M#13b5#9 no 11th | | | 11 = 11: 0 |
0 3 4 7 8 10 = 7b13#9 no 11th | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 3 4 7 8 11 = Mb13#9 no 11th, aug. scale, type e ACH | | | 0 4 8 = 0: 0 4 8 = 4: 0 4 8 = 8: 0 4 8 |
0 3 4 7 9 10 = 13#9 no 11th | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 7 9 11 = M13#9 no 11th | | | 0 = 0: 0 |
0 3 4 7 10 11 = M#13#9 no 11th, Schoen. hex | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 8 9 10 = M#13#5#9 no 11th, all-tri hex | | | 8 = 8: 0 |
0 3 4 8 9 11 = M13#5#9 no 11th | | | 4 8 = 4: 0 4 = 8: 0 8 |
0 3 4 8 10 11 = M7#5#9 no 11th | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 123667 | ||
0 1 4 9 10 11 | | | 9 = 9: 0 |
Scale Degrees: 124457 | ||
0 2 5 6 7 11 | | | 7 = 7: 0 |
diamorphic scales no 3rd (Scale Degrees: 124567) | ||
0 1 5 7 8 10 | | | 1 = 1: 0 |
0 1 5 7 8 11 | | | 1 = 1: 0 |
0 1 5 7 9 10 | | | 5 = 5: 0 |
0 1 5 7 9 11 | | | 5 = 5: 0 |
0 1 6 7 8 10 | | | 6 = 6: 0 |
0 1 6 7 9 10 | | | 6 = 6: 0 |
0 1 6 7 10 11 | | | 6 = 6: 0 |
0 2 5 7 8 10 | | | 10 = 10: 0 |
0 2 5 7 8 11 | | | 7 = 7: 0 |
0 2 5 7 9 10 | | | 5 10 = 5: 0 5 = 10: 0 7 |
0 2 5 7 9 11 | | | 5 7 = 5: 0 2 = 7: 0 10 |
0 2 5 7 10 11 | | | 7 10 = 7: 0 3 = 10: 0 9 |
0 2 6 7 8 11 | | | 7 = 7: 0 |
0 2 6 7 9 10 | | | 2 = 2: 0 |
0 2 6 7 9 11 | | | 2 7 = 2: 0 5 = 7: 0 7 |
0 2 6 7 10 11 | | | 7 = 7: 0 |
Scale Degrees: 125667 | ||
0 2 7 8 9 11 | | | 7 = 7: 0 |
0 2 7 8 10 11 | | | 7 = 7: 0 |
0 2 7 9 10 11 | | | 7 = 7: 0 |
Scale Degrees: 134456 | ||
0 3 5 6 7 9 | | | 5 = 5: 0 |
0 4 5 6 7 8 | | | 0 = 0: 0 |
0 4 5 6 7 9 | | | 0 5 = 0: 0 5 = 5: 0 7 |
Scale Degrees: 134457 | ||
0 3 5 6 7 10 = min. blues, blues hex. | | | 3 = 3: 0 |
0 3 5 6 7 11 | | | 11 = 11: 0 |
0 4 5 6 7 10 | | | 0 = 0: 0 |
0 4 5 6 7 11 | | | 0 = 0: 0 |
Scale Degrees: 134566 | ||
0 3 5 7 8 9 | | | 5 8 = 5: 0 3 = 8: 0 9 |
0 3 6 7 8 9 | | | 8 = 8: 0 |
0 4 5 7 8 9 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 6 7 8 9 | | | 0 = 0: 0 |
diamorphic scales no 2nd (Scale Degrees: 134567) | ||
0 3 5 6 10 11 = mM7b5 no 9th | | | 11 = 11: 0 |
0 3 5 7 8 10 = m7b13 no 9th | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 5 7 8 11 = mM7b13 no 9th | | | 8 = 8: 0 |
0 3 5 7 9 10 = m13 no 9th | | | 3 5 = 3: 0 2 = 5: 0 10 |
0 3 5 7 9 11 = mM13 no 9th | | | 5 = 5: 0 |
0 3 5 7 10 11 = mM7#13 no 9th | | | 3 = 3: 0 |
0 3 6 7 8 10 = m7#11b13 no 9th | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 6 7 8 11 = mM7#11b13 no 9th, Schoen. hex | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 3 6 7 9 10 = m13#11 no 9th | | | 3 = 3: 0 |
0 3 6 7 9 11 = mM13#11 no 9th | | | 11 = 11: 0 |
0 3 6 7 10 11 = mM#13#11 no 9th | | | 3 11 = 3: 0 8 = 11: 0 4 |
0 4 5 7 8 10 = 7b13 no 9th | | | 0 = 0: 0 |
0 4 5 7 8 11 = M7b13 no 9th | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 5 7 9 10 = 13 no 9th | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 5 7 9 11 = M13 no 9th | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 5 7 10 11 = M#13 no 9th | | | 0 = 0: 0 |
0 4 6 7 8 10 = 7#13#11 no 9th | | | 0 = 0: 0 |
0 4 6 7 8 11 = M#13#11 no 9th | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 6 7 9 10 = 13#11 no 9th | | | 0 = 0: 0 |
0 4 6 7 9 11 = M13#11 no 9th | | | 0 = 0: 0 |
0 4 6 7 10 11 = M#13#11 no 9th | | | 0 = 0: 0 |
Scale Degrees: 135667 | ||
0 3 7 8 9 10 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 7 8 9 11 | | | 8 = 8: 0 |
0 3 7 8 10 11 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 7 9 10 11 | | | 3 = 3: 0 |
0 4 7 8 9 10 | | | 0 = 0: 0 |
0 4 7 8 9 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 7 8 10 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 7 9 10 11 | | | 0 = 0: 0 |
0 4 8 9 10 11 | | | 4 = 4: 0 |
Scale Degrees: 145667 | ||
0 5 7 8 9 10 | | | 5 = 5: 0 |
0 5 7 8 9 11 | | | 5 = 5: 0 |
0 5 7 9 10 11 | | | 5 = 5: 0 |
chromatic septachord (Scale Degrees: 1223345) | ||
0 1 2 3 4 5 7 | | | 0 = 0: 0 |
0 1 2 3 4 6 7 | | | 0 = 0: 0 |
Scale Degrees: 1223347 | ||
0 1 2 3 4 5 10 | | | 10 = 10: 0 |
Scale Degrees: 1223356 | ||
0 1 2 3 4 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 1 2 3 4 7 9 | | | 0 9 = 0: 0 9 = 9: 0 3 |
Scale Degrees: 1223357 | ||
0 1 2 3 4 6 10 | | | 6 = 6: 0 |
0 1 2 3 4 7 10 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 1 2 3 4 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 1 2 3 4 8 10 | | | 8 = 8: 0 |
0 1 2 3 4 8 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 1223367 | ||
0 1 2 3 4 9 10 | | | 9 = 9: 0 |
0 1 2 3 4 9 11 | | | 9 = 9: 0 |
Scale Degrees: 1223445 | ||
0 1 2 4 5 6 7 | | | 0 = 0: 0 |
0 1 3 4 5 6 7 | | | 0 = 0: 0 |
0 2 3 4 5 6 7 | | | 0 = 0: 0 |
Scale Degrees: 1223456 | ||
0 1 2 3 5 7 8 | | | 1 8 = 1: 0 7 = 8: 0 5 |
0 1 2 3 5 7 9 | | | 5 = 5: 0 |
0 1 2 3 6 7 8 | | | 8 = 8: 0 |
0 1 2 3 6 7 9 | | | 2 = 2: 0 |
0 1 2 4 5 6 9 | | | 2 5 9 = 2: 0 3 7 = 5: 0 4 9 = 9: 0 5 8 |
0 1 2 4 5 7 8 | | | 0 1 = 0: 0 1 = 1: 0 11 |
0 1 2 4 5 7 9 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 2 4 6 7 8 | | | 0 = 0: 0 |
0 1 2 4 6 7 9 | | | 0 2 9 = 0: 0 2 9 = 2: 0 7 10 = 9: 0 3 5 |
0 1 3 4 5 7 8 | | | 0 1 8 = 0: 0 1 8 = 1: 0 7 11 = 8: 0 4 5 |
0 1 3 4 5 7 9 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 3 4 6 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 1 3 4 6 7 9 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 2 3 4 5 6 9 | | | 2 5 = 2: 0 3 = 5: 0 9 |
0 2 3 4 5 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 2 3 4 5 7 9 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 2 3 4 6 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 2 3 4 6 7 9 | | | 0 2 = 0: 0 2 = 2: 0 10 |
Scale Degrees: 1223457 | ||
0 1 2 3 5 6 10 | | | 6 10 = 6: 0 4 = 10: 0 8 |
0 1 2 3 5 7 10 | | | 3 10 = 3: 0 7 = 10: 0 5 |
0 1 2 3 5 7 11 | | | 7 = 7: 0 |
0 1 2 3 6 7 10 | | | 3 6 = 3: 0 3 = 6: 0 9 |
0 1 2 3 6 7 11 | | | 7 11 = 7: 0 4 = 11: 0 8 |
0 1 2 4 5 7 10 | | | 0 10 = 0: 0 10 = 10: 0 2 |
0 1 2 4 5 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 1 2 4 6 7 10 | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 1 2 4 6 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 1 3 4 5 7 10 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 1 3 4 5 7 11 | | | 0 = 0: 0 |
0 1 3 4 6 7 10 | | | 0 3 6 = 0: 0 3 6 = 3: 0 3 9 = 6: 0 6 9 |
0 1 3 4 6 7 11 | | | 0 11 = 0: 0 11 = 11: 0 1 |
0 2 3 4 5 6 10 | | | 10 = 10: 0 |
0 2 3 4 5 6 11 | | | 11 = 11: 0 |
0 2 3 4 5 7 10 | | | 0 3 10 = 0: 0 3 10 = 3: 0 7 9 = 10: 0 2 5 |
0 2 3 4 5 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 3 4 6 7 10 = 7/9/#9/#11 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 2 3 4 6 7 11 | | | 0 7 11 = 0: 0 7 11 = 7: 0 4 5 = 11: 0 1 8 |
Scale Degrees: 1223467 | ||
0 1 2 3 5 9 10 | | | 5 10 = 5: 0 5 = 10: 0 7 |
0 1 2 3 5 9 11 | | | 5 = 5: 0 |
0 2 3 4 5 9 10 | | | 5 10 = 5: 0 5 = 10: 0 7 |
0 2 3 4 5 10 11 | | | 10 = 10: 0 |
Scale Degrees: 1223566 | ||
0 1 2 3 7 8 9 | | | 8 = 8: 0 |
0 1 2 4 7 8 9 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 3 4 7 8 9 | | | 0 8 9 = 0: 0 8 9 = 8: 0 1 4 = 9: 0 3 11 |
0 2 3 4 7 8 9 | | | 0 8 = 0: 0 8 = 8: 0 4 |
Scale Degrees: 1223567 | ||
0 1 2 3 6 9 10 | | | 2 6 = 2: 0 4 = 6: 0 8 |
0 1 2 3 6 10 11 | | | 6 11 = 6: 0 5 = 11: 0 7 |
0 1 2 3 7 8 10 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 1 2 3 7 8 11 | | | 7 8 = 7: 0 1 = 8: 0 11 |
0 1 2 3 7 9 10 | | | 3 = 3: 0 |
0 1 2 3 7 9 11 | | | 7 = 7: 0 |
0 1 2 3 7 10 11 | | | 3 7 = 3: 0 4 = 7: 0 8 |
0 1 2 4 6 10 11 | | | 6 = 6: 0 |
0 1 2 4 7 8 10 | | | 0 = 0: 0 |
0 1 2 4 7 8 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 1 2 4 7 9 10 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 2 4 7 9 11 | | | 0 7 9 = 0: 0 7 9 = 7: 0 2 5 = 9: 0 3 10 |
0 1 2 4 7 10 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 1 2 4 8 10 11 | | | 4 = 4: 0 |
0 1 3 4 6 10 11 | | | 6 11 = 6: 0 5 = 11: 0 7 |
0 1 3 4 7 8 10 = Shostakovitch, alt. scale | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 1 3 4 7 8 11 | | | 0 4 8 = 0: 0 4 8 = 4: 0 4 8 = 8: 0 4 8 |
0 1 3 4 7 9 10 | | | 0 3 9 = 0: 0 3 9 = 3: 0 6 9 = 9: 0 3 6 |
0 1 3 4 7 9 11 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 3 4 7 10 11 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 2 3 4 6 10 11 | | | 11 = 11: 0 |
0 2 3 4 7 8 10 = sabach | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 2 3 4 7 8 11 | | | 0 4 7 8 = 0: 0 4 7 8 = 4: 0 3 4 8 = 7: 0 1 5 9 = 8: 0 4 8 11 |
0 2 3 4 7 9 10 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 2 3 4 7 9 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 3 4 7 10 11 | | | 0 3 7 = 0: 0 3 7 = 3: 0 4 9 = 7: 0 5 8 |
0 2 3 4 8 9 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 1223667 | ||
0 1 2 4 9 10 11 | | | 9 = 9: 0 |
0 1 3 4 8 10 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
0 1 3 4 9 10 11 | | | 9 = 9: 0 |
0 2 3 4 8 10 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 1224567 | ||
0 1 2 5 7 8 10 = Ratnangi | | | 1 10 = 1: 0 9 = 10: 0 3 |
0 1 2 5 7 8 11 = Ganamurti | | | 1 7 = 1: 0 6 = 7: 0 6 |
0 1 2 5 7 9 10 = Vanaspati | | | 5 10 = 5: 0 5 = 10: 0 7 |
0 1 2 5 7 9 11 = Manavati | | | 5 7 = 5: 0 2 = 7: 0 10 |
0 1 2 5 7 10 11 = Tanarupi | | | 7 10 = 7: 0 3 = 10: 0 9 |
0 1 2 6 7 8 10 = Jalarnavam | | | 6 = 6: 0 |
0 1 2 6 7 8 11 = Jhalavarali | | | 7 = 7: 0 |
0 1 2 6 7 9 10 = Navaneetam | | | 2 6 = 2: 0 4 = 6: 0 8 |
0 1 2 6 7 9 11 = Pavani | | | 2 7 = 2: 0 5 = 7: 0 7 |
0 1 2 6 7 10 11 = Raghupriya | | | 6 7 = 6: 0 1 = 7: 0 11 |
Scale Degrees: 1225667 | ||
0 1 2 7 8 9 11 | | | 7 = 7: 0 |
0 1 2 7 8 10 11 | | | 7 = 7: 0 |
0 1 2 7 9 10 11 | | | 7 = 7: 0 |
Scale Degrees: 1234456 | ||
0 1 3 5 6 7 8 | | | 1 8 = 1: 0 7 = 8: 0 5 |
0 1 4 5 6 7 8 | | | 0 1 = 0: 0 1 = 1: 0 11 |
0 1 4 5 6 7 9 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 2 3 5 6 7 8 | | | 8 = 8: 0 |
0 2 3 5 6 7 9 | | | 2 5 = 2: 0 3 = 5: 0 9 |
0 2 4 5 6 7 8 | | | 0 = 0: 0 |
0 2 4 5 6 7 9 | | | 0 2 5 = 0: 0 2 5 = 2: 0 3 10 = 5: 0 7 9 |
0 3 4 5 6 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 3 4 5 6 7 9 | | | 0 5 = 0: 0 5 = 5: 0 7 |
Scale Degrees: 1234457 | ||
0 1 3 5 6 7 10 | | | 3 6 = 3: 0 3 = 6: 0 9 |
0 1 3 5 6 7 11 | | | 11 = 11: 0 |
0 1 4 5 6 7 10 | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 1 4 5 6 7 11 | | | 0 = 0: 0 |
0 2 3 5 6 7 10 | | | 3 10 = 3: 0 7 = 10: 0 5 |
0 2 3 5 6 7 11 | | | 7 11 = 7: 0 4 = 11: 0 8 |
0 2 4 5 6 7 10 | | | 0 10 = 0: 0 10 = 10: 0 2 |
0 2 4 5 6 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 3 4 5 6 7 10 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 5 6 7 11 | | | 0 11 = 0: 0 11 = 11: 0 1 |
Scale Degrees: 1234566 | ||
0 1 3 5 7 8 9 = Senavati | | | 1 5 8 = 1: 0 4 7 = 5: 0 3 8 = 8: 0 5 9 |
0 1 3 6 7 8 9 = Gavambhodi | | | 8 = 8: 0 |
0 1 4 5 7 8 9 | | | 0 1 5 9 = 0: 0 1 5 9 = 1: 0 4 8 11 = 5: 0 4 7 8 = 9: 0 3 4 8 |
0 1 4 6 7 8 9 = Dhavalambari | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 2 3 5 7 8 9 = Jhankaradhwani | | | 5 8 = 5: 0 3 = 8: 0 9 |
0 2 3 6 7 8 9 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 2 4 5 7 8 9 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 2 4 6 7 8 9 = Kantamani | | | 0 2 = 0: 0 2 = 2: 0 10 |
0 3 4 5 7 8 9 | | | 0 5 8 = 0: 0 5 8 = 5: 0 3 7 = 8: 0 4 9 |
0 3 4 6 7 8 9 = Sucharitra | | | 0 8 = 0: 0 8 = 8: 0 4 |
13th chords, diamorphic scales (Scale Degrees: 1234567) | ||
0 1 3 5 6 8 10 = locrian, mb13b5b9, 7 in 4ths | | | 1 6 8 = 1: 0 5 7 = 6: 0 2 7 = 8: 0 5 10 |
0 1 3 5 6 8 11 = mMb13b5b9 | | | 1 8 11 = 1: 0 7 10 = 8: 0 3 5 = 11: 0 2 9 |
0 1 3 5 6 9 10 = m13b5b9, oriental | | | 5 6 = 5: 0 1 = 6: 0 11 |
0 1 3 5 6 9 11 = mM13b5b9 | | | 5 11 = 5: 0 6 = 11: 0 6 |
0 1 3 5 6 10 11 = mM#13b5b9 | | | 6 11 = 6: 0 5 = 11: 0 7 |
0 1 3 5 7 8 10 = phrygian, mb13b9, ousak, pelog, In, Hanumatodi, bhairavi | | | 1 3 8 = 1: 0 2 7 = 3: 0 5 10 = 8: 0 5 7 |
0 1 3 5 7 8 11 = mMb13b9, Neapolitan min., harm. phrygian, Dhenuka | | | 1 8 = 1: 0 7 = 8: 0 5 |
0 1 3 5 7 9 10 = m13b9, phrygidorian, assyrian, Natakapriya | | | 3 5 = 3: 0 2 = 5: 0 10 |
0 1 3 5 7 9 11 = mM13b9, Neapolitan maj., phrygian maj., Kokilapriya | | | 5 = 5: 0 |
0 1 3 5 7 10 11 = mM#13b9, Rupavati | | | 3 = 3: 0 |
0 1 3 5 8 9 10 = m13#5b9 | | | 1 5 8 = 1: 0 4 7 = 5: 0 3 8 = 8: 0 5 9 |
0 1 3 5 8 9 11 = mM13#5b9 | | | 1 5 8 = 1: 0 4 7 = 5: 0 3 8 = 8: 0 5 9 |
0 1 3 5 8 10 11 = m#13#5b9 | | | 1 8 = 1: 0 7 = 8: 0 5 |
0 1 3 6 7 8 10 = mb13b9#11, full pelog, Bhavapriya | | | 3 6 8 = 3: 0 3 5 = 6: 0 2 9 = 8: 0 7 10 |
0 1 3 6 7 8 11 = mMb13b9#11, Shubhapantuvarali, todi | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 1 3 6 7 9 10 = m13b9#11, Shadvidamargini | | | 3 6 = 3: 0 3 = 6: 0 9 |
0 1 3 6 7 9 11 = mM13b9#11, Suvarnangi | | | 11 = 11: 0 |
0 1 3 6 7 10 11 = mM#13b9#11, Divyamani | | | 3 6 11 = 3: 0 3 8 = 6: 0 5 9 = 11: 0 4 7 |
0 1 3 6 8 9 10 = m13b9#11 | | | 6 8 = 6: 0 2 = 8: 0 10 |
0 1 3 6 8 9 11 = mM13b9#11 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 1 3 6 8 10 11 = m#13b9#11 | | | 6 8 11 = 6: 0 2 5 = 8: 0 3 10 = 11: 0 7 9 |
0 1 4 5 6 8 10 = 7b13#5b9#11 | | | 1 6 = 1: 0 5 = 6: 0 7 |
0 1 4 5 6 8 11 = M7b13#5b9#11, Persian | | | 1 4 = 1: 0 3 = 4: 0 9 |
0 1 4 5 6 9 10 = 13b5b9, oriental, tsinganikos, Persian, tsinganikos | | | 5 6 9 = 5: 0 1 4 = 6: 0 3 11 = 9: 0 8 9 |
0 1 4 5 6 9 11 = M13b5b9 | | | 5 9 = 5: 0 4 = 9: 0 8 |
0 1 4 5 6 10 11 = M#13b5b9 | | | 6 = 6: 0 |
0 1 4 5 7 8 10 = 7b13b9, Spanish Gypsy, phryg. dom., Freygish, Hijaz, Homayoun, Vakulabharanam | | | 0 1 = 0: 0 1 = 1: 0 11 |
0 1 4 5 7 8 11 = M#13b9, double harm. maj., hijazkiar, Mayamalavagowla, bhairav | | | 0 1 4 = 0: 0 1 4 = 1: 0 3 11 = 4: 0 8 9 |
0 1 4 5 7 9 10 = 13b9, neapolitan mixolydian, Chakravakam | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 4 5 7 9 11 = M13b9, Suryakantam | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 4 5 7 10 11 = M#13b9, Hatakambari | | | 0 = 0: 0 |
0 1 4 5 8 9 10 = 13#5b9 | | | 1 5 9 = 1: 0 4 8 = 5: 0 4 8 = 9: 0 4 8 |
0 1 4 5 8 9 11 = M13#5b9 | | | 1 4 5 9 = 1: 0 3 4 8 = 4: 0 1 5 9 = 5: 0 4 8 11 = 9: 0 4 7 8 |
0 1 4 5 8 10 11 = M#13#5b5, enigmatic ascending | | | 1 4 = 1: 0 3 = 4: 0 9 |
0 1 4 6 7 8 10 = 7b13b9#11, Naamanarayani | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 1 4 6 7 8 11 = M#13b9#11, Kaamavardini, purvi | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 1 4 6 7 9 10 = 13b9#11, Ramapriya | | | 0 6 9 = 0: 0 6 9 = 6: 0 3 6 = 9: 0 3 9 |
0 1 4 6 7 9 11 = M13b9#11, Gamanasrama, marwa | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 4 6 7 10 11 = M#13b9#11, Vishwambari | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 1 4 6 8 9 10 = 13#4b9#11 | | | 6 9 = 6: 0 3 = 9: 0 9 |
0 1 4 6 8 9 11 = M13#5b9#11 | | | 4 9 = 4: 0 5 = 9: 0 7 |
0 1 4 6 8 10 11 = M#13#5b9#11, enigmatic ascending | | | 4 6 = 4: 0 2 = 6: 0 10 |
0 2 3 5 6 8 10 = 7b13b5, aeolocrian, half-dim. scale, min. locr. | | | 8 10 = 8: 0 2 = 10: 0 10 |
0 2 3 5 6 8 11 = mMb13b5, locrian min. | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 2 3 5 6 9 10 = m13b5, doric locrian, kiordi asc. | | | 2 5 10 = 2: 0 3 8 = 5: 0 5 9 = 10: 0 4 7 |
0 2 3 5 6 9 11 = mM13#11 | | | 2 5 11 = 2: 0 3 9 = 5: 0 6 9 = 11: 0 3 6 |
0 2 3 5 6 10 11 = mM#13 | | | 10 11 = 10: 0 1 = 11: 0 11 |
0 2 3 5 7 8 10 = aeolian, mb13, kiordi desc., Natabhairavi, asavari | | | 3 8 10 = 3: 0 5 7 = 8: 0 2 7 = 10: 0 5 10 |
0 2 3 5 7 8 11 = mMb13, harm. min., Keeravani | | | 7 8 = 7: 0 1 = 8: 0 11 |
0 2 3 5 7 9 10 = dorian, m13, ritsu, tomora mesengo, Kharaharapriya, khafi, 7TET, Thai | | | 3 5 10 = 3: 0 2 7 = 5: 0 5 10 = 10: 0 5 7 |
0 2 3 5 7 9 11 = mel. min., mM13, jazz min., Gourimanohari | | | 5 7 = 5: 0 2 = 7: 0 10 |
0 2 3 5 7 10 11 = mM#13, Varunapriya | | | 3 7 10 = 3: 0 4 7 = 7: 0 3 8 = 10: 0 5 9 |
0 2 3 5 8 9 10 = m13#5 | | | 5 8 10 = 5: 0 3 5 = 8: 0 2 9 = 10: 0 7 10 |
0 2 3 5 8 9 11 = mM13#5 | | | 5 8 = 5: 0 3 = 8: 0 9 |
0 2 3 5 8 10 11 = mMb13 | | | 8 10 = 8: 0 2 = 10: 0 10 |
0 2 3 6 7 8 10 = mb13#11, Gypsy, Hungarian min. I, Aeolean #4, Shanmukhapriya | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 2 3 6 7 8 11 = mMb13#11, hungarian/gypsy min., Egypt. scale, niaventi, Simhendramadhyamam | | | 7 8 11 = 7: 0 1 4 = 8: 0 3 11 = 11: 0 8 9 |
0 2 3 6 7 9 10 = m13#11, Misheberak, Ukrainian Dor., souzinak, Romanian min., Hemavati | | | 2 3 = 2: 0 1 = 3: 0 11 |
0 2 3 6 7 9 11 = mM13#11, lydian dim., Dharmavati | | | 2 7 11 = 2: 0 5 9 = 7: 0 4 7 = 11: 0 3 8 |
0 2 3 6 7 10 11 = mM#13#11, Neetimati, 2367AB & m7b5, 2367AB & m7 | | | 3 7 11 = 3: 0 4 8 = 7: 0 4 8 = 11: 0 4 8 |
0 2 3 6 8 9 10 = m13#5#11 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 2 3 6 8 9 11 = mM13#5#11 | | | 2 8 11 = 2: 0 6 9 = 8: 0 3 6 = 11: 0 3 9 |
0 2 3 6 8 10 11 = mM#13#5#11 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 2 4 5 6 8 10 = 7b13b5, Major Locrian | | | 10 = 10: 0 |
0 2 4 5 6 8 11 = M7b13b5 | | | 4 = 4: 0 |
0 2 4 5 6 9 10 = 13b5 | | | 2 5 10 = 2: 0 3 8 = 5: 0 5 9 = 10: 0 4 7 |
0 2 4 5 6 9 11 = M13b5 | | | 2 5 = 2: 0 3 = 5: 0 9 |
0 2 4 5 6 10 11 = M#13b5 | | | 10 = 10: 0 |
0 2 4 5 7 8 10 = 7b13, myxaeolian, Hindu, mel. maj. | | | 0 10 = 0: 0 10 = 10: 0 2 |
0 2 4 5 7 8 11 = Mb13, Harmonic maj., Sarasangi, suzinak | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 2 4 5 7 9 10 = mixolydian, rast desc., jiharkah, Harikambhoji, khamaj | | | 0 5 10 = 0: 0 5 10 = 5: 0 5 7 = 10: 0 2 7 |
0 2 4 5 7 9 11 = maj. scale, ionian, M13, rast ascending, silaba, bilawal, Dheerasankarabaranam | | | 0 5 7 = 0: 0 5 7 = 5: 0 2 7 = 7: 0 5 10 |
0 2 4 5 7 10 11 = M#13, Naganandini | | | 0 7 10 = 0: 0 7 10 = 7: 0 3 5 = 10: 0 2 9 |
0 2 4 5 8 9 10 = 13#5 | | | 5 10 = 5: 0 5 = 10: 0 7 |
0 2 4 5 8 9 11 = M13#5 | | | 4 5 = 4: 0 1 = 5: 0 11 |
0 2 4 5 8 10 11 = M#13#5 | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 2 4 6 7 8 10 = 7b13#11, lydian min., Rishabhapriya | | | 0 = 0: 0 |
0 2 4 6 7 8 11 = Mb13#11, Latangi | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 2 4 6 7 9 10 = 13#11, lydian dominant, lydomyxian, overtone, Vachaspati | | | 0 2 = 0: 0 2 = 2: 0 10 |
0 2 4 6 7 9 11 = M13#11, lydian, 7 in 5ths, sauta, Mechakalyani, kalyan | | | 0 2 7 = 0: 0 2 7 = 2: 0 5 10 = 7: 0 5 7 |
0 2 4 6 7 10 11 = M#13#11, Chitrambari | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 2 4 6 8 9 10 = 13#5#11 | | | 2 = 2: 0 |
0 2 4 6 8 9 11 = M13#5#11, lydian aug. | | | 2 4 = 2: 0 2 = 4: 0 10 |
0 2 4 6 8 10 11 = M#11, leading whole tone | | | 4 = 4: 0 |
0 3 4 5 6 8 10 = 7b13b5#9 | | | 8 = 8: 0 |
0 3 4 5 6 8 11 = M7b13b5#9 | | | 4 8 11 = 4: 0 4 7 = 8: 0 3 8 = 11: 0 5 9 |
0 3 4 5 6 9 10 = 13b5#9 | | | 5 = 5: 0 |
0 3 4 5 6 9 11 = M13b5#9 | | | 5 11 = 5: 0 6 = 11: 0 6 |
0 3 4 5 6 10 11 = M#13b5#9 | | | 11 = 11: 0 |
0 3 4 5 7 8 10 = 7b13#9, segiah, Ragavardhini | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 3 4 5 7 8 11 = M7b13#9, houzam, Gangeyabhushani | | | 0 4 8 = 0: 0 4 8 = 4: 0 4 8 = 8: 0 4 8 |
0 3 4 5 7 9 10 = 13#9, Vagadheeswari, mixolydian #2 | | | 0 3 5 = 0: 0 3 5 = 3: 0 2 9 = 5: 0 7 10 |
0 3 4 5 7 9 11 = M13#9, Shulini | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 3 4 5 7 10 11 = M#13#9, Chalanata | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 5 8 9 10 = 13#5#9 | | | 5 8 = 5: 0 3 = 8: 0 9 |
0 3 4 5 8 9 11 = M13#5#9, ionian #2 #5 | | | 4 5 8 = 4: 0 1 4 = 5: 0 3 11 = 8: 0 8 9 |
0 3 4 5 8 10 11 = M7#13#5#9 | | | 4 8 = 4: 0 4 = 8: 0 8 |
0 3 4 6 7 8 10 = mb13b5#9, Jyoti swarupini | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 3 4 6 7 8 11 = Mb13b5#9, Dhatuvardani | | | 0 4 8 11 = 0: 0 4 8 11 = 4: 0 4 7 8 = 8: 0 3 4 8 = 11: 0 1 5 9 |
0 3 4 6 7 9 10 = 13#9#11, Hungarian maj. I, Naasikabhushini | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 6 7 9 11 = M13#9#11, Hungarian maj. II, mustar, periaiotikos, Kosalamu | | | 0 11 = 0: 0 11 = 11: 0 1 |
0 3 4 6 7 10 11 = M#11#5#9, Rasikapriya | | | 0 3 11 = 0: 0 3 11 = 3: 0 8 9 = 11: 0 1 4 |
0 3 4 6 8 9 10 = 13#5#9 | | | 8 = 8: 0 |
0 3 4 6 8 9 11 = mM13#5#9 | | | 4 8 11 = 4: 0 4 7 = 8: 0 3 8 = 11: 0 5 9 |
0 3 4 6 8 10 11 = mM#13#5#9#11 | | | 4 8 11 = 4: 0 4 7 = 8: 0 3 8 = 11: 0 5 9 |
Scale Degrees: 1234667 | ||
0 2 3 5 9 10 11 | | | 5 10 = 5: 0 5 = 10: 0 7 |
0 3 4 5 9 10 11 | | | 5 = 5: 0 |
Scale Degrees: 1235667 | ||
0 1 3 7 8 9 10 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 1 3 7 8 9 11 | | | 8 = 8: 0 |
0 1 3 7 8 10 11 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 1 3 7 9 10 11 | | | 3 = 3: 0 |
0 1 4 7 8 9 10 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 4 7 8 9 11 | | | 0 4 9 = 0: 0 4 9 = 4: 0 5 8 = 9: 0 3 7 |
0 1 4 7 8 10 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 1 4 7 9 10 11 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 2 3 6 9 10 11 | | | 2 11 = 2: 0 9 = 11: 0 3 |
0 2 3 7 8 9 10 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 2 3 7 8 9 11 | | | 7 8 = 7: 0 1 = 8: 0 11 |
0 2 3 7 8 10 11 | | | 3 7 8 = 3: 0 4 5 = 7: 0 1 8 = 8: 0 7 11 |
0 2 3 7 9 10 11 | | | 3 7 = 3: 0 4 = 7: 0 8 |
0 2 4 7 8 9 10 | | | 0 = 0: 0 |
0 2 4 7 8 9 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 2 4 7 8 10 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 2 4 7 9 10 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 3 4 6 9 10 11 | | | 11 = 11: 0 |
0 3 4 7 8 9 10 | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 3 4 7 8 9 11 | | | 0 4 8 = 0: 0 4 8 = 4: 0 4 8 = 8: 0 4 8 |
0 3 4 7 8 10 11 = 03478B & m7, 03478B & dom.7 | | | 0 3 4 8 = 0: 0 3 4 8 = 3: 0 1 5 9 = 4: 0 4 8 11 = 8: 0 4 7 8 |
0 3 4 7 9 10 11 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 3 4 8 9 10 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 1244567 | ||
0 1 5 6 7 8 10 | | | 1 6 = 1: 0 5 = 6: 0 7 |
0 1 5 6 7 10 11 | | | 6 = 6: 0 |
0 2 5 6 7 10 11 | | | 7 10 = 7: 0 3 = 10: 0 9 |
Scale Degrees: 1245667 | ||
0 1 5 7 8 9 10 | | | 1 5 = 1: 0 4 = 5: 0 8 |
0 1 5 7 8 9 11 | | | 1 5 = 1: 0 4 = 5: 0 8 |
0 1 5 7 8 10 11 | | | 1 = 1: 0 |
0 1 6 7 8 9 10 | | | 6 = 6: 0 |
0 1 6 7 8 10 11 | | | 6 = 6: 0 |
0 2 5 7 8 9 10 | | | 5 10 = 5: 0 5 = 10: 0 7 |
0 2 5 7 8 9 11 | | | 5 7 = 5: 0 2 = 7: 0 10 |
0 2 5 7 8 10 11 | | | 7 10 = 7: 0 3 = 10: 0 9 |
0 2 6 7 8 9 10 | | | 2 = 2: 0 |
0 2 6 7 8 9 11 | | | 2 7 = 2: 0 5 = 7: 0 7 |
0 2 6 7 8 10 11 | | | 7 = 7: 0 |
Scale Degrees: 1245677 | ||
0 1 5 7 9 10 11 | | | 5 = 5: 0 |
0 1 6 7 9 10 11 | | | 6 = 6: 0 |
0 2 5 7 9 10 11 | | | 5 7 10 = 5: 0 2 5 = 7: 0 3 10 = 10: 0 7 9 |
0 2 6 7 9 10 11 | | | 2 7 = 2: 0 5 = 7: 0 7 |
Scale Degrees: 1256677 | ||
0 2 7 8 9 10 11 | | | 7 = 7: 0 |
Scale Degrees: 1344566 | ||
0 3 5 6 7 8 9 | | | 5 8 = 5: 0 3 = 8: 0 9 |
0 4 5 6 7 8 9 | | | 0 5 = 0: 0 5 = 5: 0 7 |
Scale Degrees: 1344567 | ||
0 3 5 6 7 8 10 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 5 6 7 8 11 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 3 5 6 7 9 10 | | | 3 5 = 3: 0 2 = 5: 0 10 |
0 3 5 6 7 9 11 = min.-maj. blues septad | | | 5 11 = 5: 0 6 = 11: 0 6 |
0 3 5 6 7 10 11 = manic depression blues | | | 3 11 = 3: 0 8 = 11: 0 4 |
0 4 5 6 7 8 10 | | | 0 = 0: 0 |
0 4 5 6 7 8 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 5 6 7 9 10 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 5 6 7 9 11 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 5 6 7 10 11 | | | 0 = 0: 0 |
Scale Degrees: 1345667 | ||
0 3 5 7 8 9 10 | | | 3 5 8 = 3: 0 2 5 = 5: 0 3 10 = 8: 0 7 9 |
0 3 5 7 8 9 11 | | | 5 8 = 5: 0 3 = 8: 0 9 |
0 3 5 7 8 10 11 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 5 7 9 10 11 | | | 3 5 = 3: 0 2 = 5: 0 10 |
0 3 6 7 8 9 10 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 3 6 7 8 9 11 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 3 6 7 8 10 11 | | | 3 8 11 = 3: 0 5 8 = 8: 0 3 7 = 11: 0 4 9 |
0 3 6 7 9 10 11 | | | 3 11 = 3: 0 8 = 11: 0 4 |
0 4 5 6 9 10 11 | | | 5 = 5: 0 |
0 4 5 7 8 9 10 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 5 7 8 9 11 | | | 0 4 5 = 0: 0 4 5 = 4: 0 1 8 = 5: 0 7 11 |
0 4 5 7 8 10 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 5 7 9 10 11 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 6 7 8 9 10 | | | 0 = 0: 0 |
0 4 6 7 8 9 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 6 7 8 10 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 6 7 9 10 11 | | | 0 = 0: 0 |
Scale Degrees: 1356677 | ||
0 3 7 8 9 10 11 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 4 7 8 9 10 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
Scale Degrees: 1445667 | ||
0 5 6 7 9 10 11 | | | 5 = 5: 0 |
Scale Degrees: 1456677 | ||
0 5 7 8 9 10 11 | | | 5 = 5: 0 |
chromatic octachord (Scale Degrees: 12223445) | ||
0 1 2 3 4 5 6 7 = 1st 8 chromatics | | | 0 = 0: 0 |
Scale Degrees: 12223456 | ||
0 1 2 3 4 5 7 8 | | | 0 1 8 = 0: 0 1 8 = 1: 0 7 11 = 8: 0 4 5 |
0 1 2 3 4 5 7 9 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 2 3 4 6 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 1 2 3 4 6 7 9 | | | 0 2 9 = 0: 0 2 9 = 2: 0 7 10 = 9: 0 3 5 |
Scale Degrees: 12223457 | ||
0 1 2 3 4 5 7 10 | | | 0 3 10 = 0: 0 3 10 = 3: 0 7 9 = 10: 0 2 5 |
0 1 2 3 4 5 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 1 2 3 4 6 7 10 | | | 0 3 6 = 0: 0 3 6 = 3: 0 3 9 = 6: 0 6 9 |
0 1 2 3 4 6 7 11 | | | 0 7 11 = 0: 0 7 11 = 7: 0 4 5 = 11: 0 1 8 |
Scale Degrees: 12223566 | ||
0 1 2 3 4 7 8 9 | | | 0 8 9 = 0: 0 8 9 = 8: 0 1 4 = 9: 0 3 11 |
Scale Degrees: 12223567 | ||
0 1 2 3 4 7 8 10 | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 1 2 3 4 7 8 11 | | | 0 4 7 8 = 0: 0 4 7 8 = 4: 0 3 4 8 = 7: 0 1 5 9 = 8: 0 4 8 11 |
0 1 2 3 4 7 9 10 | | | 0 3 9 = 0: 0 3 9 = 3: 0 6 9 = 9: 0 3 6 |
0 1 2 3 4 7 9 11 | | | 0 7 9 = 0: 0 7 9 = 7: 0 2 5 = 9: 0 3 10 |
0 1 2 3 4 7 10 11 | | | 0 3 7 = 0: 0 3 7 = 3: 0 4 9 = 7: 0 5 8 |
0 1 2 3 4 8 10 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 12223667 | ||
0 1 2 3 4 9 10 11 | | | 9 = 9: 0 |
Scale Degrees: 12233457 | ||
0 1 2 3 4 5 6 10 | | | 6 10 = 6: 0 4 = 10: 0 8 |
0 1 2 3 4 6 8 10 | | | 6 8 = 6: 0 2 = 8: 0 10 |
Scale Degrees: 12234456 | ||
0 1 2 3 5 6 7 9 | | | 2 5 = 2: 0 3 = 5: 0 9 |
0 1 2 4 5 6 7 8 | | | 0 1 = 0: 0 1 = 1: 0 11 |
0 1 2 4 5 6 7 9 | | | 0 2 5 9 = 0: 0 2 5 9 = 2: 0 3 7 10 = 5: 0 4 7 9 = 9: 0 3 5 8 |
0 1 3 4 5 6 7 8 | | | 0 1 8 = 0: 0 1 8 = 1: 0 7 11 = 8: 0 4 5 |
0 1 3 4 5 6 7 9 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
Scale Degrees: 12234457 | ||
0 1 2 3 5 6 7 10 | | | 3 6 10 = 3: 0 3 7 = 6: 0 4 9 = 10: 0 5 8 |
0 1 2 3 5 6 7 11 | | | 7 11 = 7: 0 4 = 11: 0 8 |
0 1 2 4 5 6 7 10 | | | 0 6 10 = 0: 0 6 10 = 6: 0 4 6 = 10: 0 2 8 |
0 1 2 4 5 6 7 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 1 3 4 5 6 7 10 | | | 0 3 6 = 0: 0 3 6 = 3: 0 3 9 = 6: 0 6 9 |
0 1 3 4 5 6 7 11 | | | 0 11 = 0: 0 11 = 11: 0 1 |
0 2 3 4 5 6 7 10 | | | 0 3 10 = 0: 0 3 10 = 3: 0 7 9 = 10: 0 2 5 |
0 2 3 4 5 6 7 11 | | | 0 7 11 = 0: 0 7 11 = 7: 0 4 5 = 11: 0 1 8 |
Scale Degrees: 12234566 | ||
0 1 2 3 5 7 8 9 | | | 1 5 8 = 1: 0 4 7 = 5: 0 3 8 = 8: 0 5 9 |
0 1 2 3 6 7 8 9 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 1 2 4 5 7 8 9 | | | 0 1 5 9 = 0: 0 1 5 9 = 1: 0 4 8 11 = 5: 0 4 7 8 = 9: 0 3 4 8 |
0 1 2 4 6 7 8 9 | | | 0 2 9 = 0: 0 2 9 = 2: 0 7 10 = 9: 0 3 5 |
0 1 3 4 5 7 8 9 | | | 0 1 5 8 9 = 0: 0 1 5 8 9 = 1: 0 4 7 8 11 = 5: 0 3 4 7 8 = 8: 0 1 4 5 9 = 9: 0 3 4 8 11 |
0 1 3 4 6 7 8 9 | | | 0 8 9 = 0: 0 8 9 = 8: 0 1 4 = 9: 0 3 11 |
0 2 3 4 5 7 8 9 | | | 0 5 8 = 0: 0 5 8 = 5: 0 3 7 = 8: 0 4 9 |
0 2 3 4 6 7 8 9 | | | 0 2 8 = 0: 0 2 8 = 2: 0 6 10 = 8: 0 4 6 |
diamorphic with supplementary 2nd (Scale Degrees: 12234567) | ||
0 1 2 3 5 6 8 10 | | | 1 6 8 10 = 1: 0 5 7 9 = 6: 0 2 4 7 = 8: 0 2 5 10 = 10: 0 3 8 10 |
0 1 2 3 5 7 8 10 = aeophrygian | | | 1 3 8 10 = 1: 0 2 7 9 = 3: 0 5 7 10 = 8: 0 2 5 7 = 10: 0 3 5 10 |
0 1 2 3 5 7 8 11 | | | 1 7 8 = 1: 0 6 7 = 7: 0 1 6 = 8: 0 5 11 |
0 1 2 3 5 7 9 10 | | | 3 5 10 = 3: 0 2 7 = 5: 0 5 10 = 10: 0 5 7 |
0 1 2 3 5 7 9 11 | | | 5 7 = 5: 0 2 = 7: 0 10 |
0 1 2 3 5 7 10 11 | | | 3 7 10 = 3: 0 4 7 = 7: 0 3 8 = 10: 0 5 9 |
0 1 2 3 6 7 8 10 | | | 3 6 8 = 3: 0 3 5 = 6: 0 2 9 = 8: 0 7 10 |
0 1 2 3 6 7 8 11 | | | 7 8 11 = 7: 0 1 4 = 8: 0 3 11 = 11: 0 8 9 |
0 1 2 3 6 7 9 10 | | | 2 3 6 = 2: 0 1 4 = 3: 0 3 11 = 6: 0 8 9 |
0 1 2 3 6 7 9 11 | | | 2 7 11 = 2: 0 5 9 = 7: 0 4 7 = 11: 0 3 8 |
0 1 2 3 6 7 10 11 | | | 3 6 7 11 = 3: 0 3 4 8 = 6: 0 1 5 9 = 7: 0 4 8 11 = 11: 0 4 7 8 |
0 1 2 4 5 7 8 10 | | | 0 1 10 = 0: 0 1 10 = 1: 0 9 11 = 10: 0 2 3 |
0 1 2 4 5 7 8 11 | | | 0 1 4 7 = 0: 0 1 4 7 = 1: 0 3 6 11 = 4: 0 3 8 9 = 7: 0 5 6 9 |
0 1 2 4 5 7 9 10 | | | 0 5 9 10 = 0: 0 5 9 10 = 5: 0 4 5 7 = 9: 0 1 3 8 = 10: 0 2 7 11 |
0 1 2 4 5 7 9 11 | | | 0 5 7 9 = 0: 0 5 7 9 = 5: 0 2 4 7 = 7: 0 2 5 10 = 9: 0 3 8 10 |
0 1 2 4 5 7 10 11 | | | 0 7 10 = 0: 0 7 10 = 7: 0 3 5 = 10: 0 2 9 |
0 1 2 4 6 7 8 10 | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 1 2 4 6 7 8 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 1 2 4 6 7 9 10 | | | 0 2 6 9 = 0: 0 2 6 9 = 2: 0 4 7 10 = 6: 0 3 6 8 = 9: 0 3 5 9 |
0 1 2 4 6 7 9 11 = 8 in 5ths | | | 0 2 7 9 = 0: 0 2 7 9 = 2: 0 5 7 10 = 7: 0 2 5 7 = 9: 0 3 5 10 |
0 1 2 4 6 7 10 11 | | | 0 6 7 = 0: 0 6 7 = 6: 0 1 6 = 7: 0 5 11 |
0 1 2 4 6 8 10 11 | | | 4 6 = 4: 0 2 = 6: 0 10 |
0 1 3 4 5 6 9 10 | | | 5 6 9 = 5: 0 1 4 = 6: 0 3 11 = 9: 0 8 9 |
0 1 3 4 5 7 8 10 = 8-tone Span. phrygian, Flamenco | | | 0 1 3 8 = 0: 0 1 3 8 = 1: 0 2 7 11 = 3: 0 5 9 10 = 8: 0 4 5 7 |
0 1 3 4 5 7 8 11 | | | 0 1 4 8 = 0: 0 1 4 8 = 1: 0 3 7 11 = 4: 0 4 8 9 = 8: 0 4 5 8 |
0 1 3 4 5 7 9 10 | | | 0 3 5 9 = 0: 0 3 5 9 = 3: 0 2 6 9 = 5: 0 4 7 10 = 9: 0 3 6 8 |
0 1 3 4 5 7 9 11 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 3 4 5 7 10 11 | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 1 3 4 6 7 8 10 | | | 0 3 6 8 = 0: 0 3 6 8 = 3: 0 3 5 9 = 6: 0 2 6 9 = 8: 0 4 7 10 |
0 1 3 4 6 7 8 11 | | | 0 4 8 11 = 0: 0 4 8 11 = 4: 0 4 7 8 = 8: 0 3 4 8 = 11: 0 1 5 9 |
0 1 3 4 6 7 9 10 = dim. scale, Octatonic | | | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 |
0 1 3 4 6 7 9 11 | | | 0 9 11 = 0: 0 9 11 = 9: 0 2 3 = 11: 0 1 10 |
0 1 3 4 6 7 10 11 | | | 0 3 6 11 = 0: 0 3 6 11 = 3: 0 3 8 9 = 6: 0 5 6 9 = 11: 0 1 4 7 |
0 2 3 4 5 6 9 10 | | | 2 5 10 = 2: 0 3 8 = 5: 0 5 9 = 10: 0 4 7 |
0 2 3 4 5 6 10 11 | | | 10 11 = 10: 0 1 = 11: 0 11 |
0 2 3 4 5 7 8 10 | | | 0 3 8 10 = 0: 0 3 8 10 = 3: 0 5 7 9 = 8: 0 2 4 7 = 10: 0 2 5 10 |
0 2 3 4 5 7 8 11 | | | 0 4 7 8 = 0: 0 4 7 8 = 4: 0 3 4 8 = 7: 0 1 5 9 = 8: 0 4 8 11 |
0 2 3 4 5 7 9 10 = Bebop Dorian, mixodorian | | | 0 3 5 10 = 0: 0 3 5 10 = 3: 0 2 7 9 = 5: 0 5 7 10 = 10: 0 2 5 7 |
0 2 3 4 5 7 9 11 = ionian & mel. min. | | | 0 5 7 = 0: 0 5 7 = 5: 0 2 7 = 7: 0 5 10 |
0 2 3 4 5 7 10 11 | | | 0 3 7 10 = 0: 0 3 7 10 = 3: 0 4 7 9 = 7: 0 3 5 8 = 10: 0 2 5 9 |
0 2 3 4 6 7 8 10 | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 2 3 4 6 7 8 11 | | | 0 4 7 8 11 = 0: 0 4 7 8 11 = 4: 0 3 4 7 8 = 7: 0 1 4 5 9 = 8: 0 3 4 8 11 = 11: 0 1 5 8 9 |
0 2 3 4 6 7 9 10 | | | 0 2 3 = 0: 0 2 3 = 2: 0 1 10 = 3: 0 9 11 |
0 2 3 4 6 7 9 11 | | | 0 2 7 11 = 0: 0 2 7 11 = 2: 0 5 9 10 = 7: 0 4 5 7 = 11: 0 1 3 8 |
0 2 3 4 6 7 10 11 = 2367AB & dom.7, 2367AB & M7 | | | 0 3 7 11 = 0: 0 3 7 11 = 3: 0 4 8 9 = 7: 0 4 5 8 = 11: 0 1 4 8 |
Scale Degrees: 12234667 | ||
0 1 3 4 5 9 10 11 | | | 5 9 = 5: 0 4 = 9: 0 8 |
Scale Degrees: 12235667 | ||
0 1 2 3 7 8 9 10 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 1 2 3 7 8 9 11 | | | 7 8 = 7: 0 1 = 8: 0 11 |
0 1 2 3 7 8 10 11 | | | 3 7 8 = 3: 0 4 5 = 7: 0 1 8 = 8: 0 7 11 |
0 1 2 3 7 9 10 11 | | | 3 7 = 3: 0 4 = 7: 0 8 |
0 1 2 4 7 8 9 10 | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 2 4 7 8 9 11 | | | 0 4 7 9 = 0: 0 4 7 9 = 4: 0 3 5 8 = 7: 0 2 5 9 = 9: 0 3 7 10 |
0 1 2 4 7 8 10 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 1 2 4 7 9 10 11 | | | 0 7 9 = 0: 0 7 9 = 7: 0 2 5 = 9: 0 3 10 |
0 1 3 4 6 8 10 11 | | | 4 6 8 11 = 4: 0 2 4 7 = 6: 0 2 5 10 = 8: 0 3 8 10 = 11: 0 5 7 9 |
0 1 3 4 6 9 10 11 | | | 6 9 11 = 6: 0 3 5 = 9: 0 2 9 = 11: 0 7 10 |
0 1 3 4 7 8 9 10 = ultraphrygian | | | 0 3 8 9 = 0: 0 3 8 9 = 3: 0 5 6 9 = 8: 0 1 4 7 = 9: 0 3 6 11 |
0 1 3 4 7 8 9 11 | | | 0 4 8 9 = 0: 0 4 8 9 = 4: 0 4 5 8 = 8: 0 1 4 8 = 9: 0 3 7 11 |
0 1 3 4 7 8 10 11 | | | 0 3 4 8 = 0: 0 3 4 8 = 3: 0 1 5 9 = 4: 0 4 8 11 = 8: 0 4 7 8 |
0 1 3 4 7 9 10 11 | | | 0 3 9 = 0: 0 3 9 = 3: 0 6 9 = 9: 0 3 6 |
0 1 3 4 8 9 10 11 | | | 4 8 9 = 4: 0 4 5 = 8: 0 1 8 = 9: 0 7 11 |
0 2 3 4 6 9 10 11 | | | 2 11 = 2: 0 9 = 11: 0 3 |
0 2 3 4 7 8 9 10 | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 2 3 4 7 8 9 11 | | | 0 4 7 8 = 0: 0 4 7 8 = 4: 0 3 4 8 = 7: 0 1 5 9 = 8: 0 4 8 11 |
0 2 3 4 7 8 10 11 | | | 0 3 4 7 8 = 0: 0 3 4 7 8 = 3: 0 1 4 5 9 = 4: 0 3 4 8 11 = 7: 0 1 5 8 9 = 8: 0 4 7 8 11 |
0 2 3 4 7 9 10 11 | | | 0 3 7 = 0: 0 3 7 = 3: 0 4 9 = 7: 0 5 8 |
0 2 3 4 8 9 10 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
Scale Degrees: 12244566 | ||
0 1 2 5 6 7 8 9 | | | 1 2 5 = 1: 0 1 4 = 2: 0 3 11 = 5: 0 8 9 |
Scale Degrees: 12244567 | ||
0 1 2 5 6 7 8 10 | | | 1 6 10 = 1: 0 5 9 = 6: 0 4 7 = 10: 0 3 8 |
0 1 2 5 6 7 8 11 | | | 1 7 = 1: 0 6 = 7: 0 6 |
0 1 2 5 6 7 9 11 | | | 2 5 7 = 2: 0 3 5 = 5: 0 2 9 = 7: 0 7 10 |
0 1 2 5 6 7 10 11 | | | 6 7 10 = 6: 0 1 4 = 7: 0 3 11 = 10: 0 8 9 |
Scale Degrees: 12245667 | ||
0 1 2 5 7 8 10 11 | | | 1 7 10 = 1: 0 6 9 = 7: 0 3 6 = 10: 0 3 9 |
0 1 2 5 7 9 10 11 | | | 5 7 10 = 5: 0 2 5 = 7: 0 3 10 = 10: 0 7 9 |
0 1 2 6 7 8 10 11 | | | 6 7 = 6: 0 1 = 7: 0 11 |
0 1 2 6 7 9 10 11 | | | 2 6 7 = 2: 0 4 5 = 6: 0 1 8 = 7: 0 7 11 |
0 1 2 6 7 8 9 10 | | | 2 6 = 2: 0 4 = 6: 0 8 |
Scale Degrees: 12256677 | ||
0 1 2 7 8 9 10 11 | | | 7 = 7: 0 |
chromatic nonachord (Scale Degrees: 12344456) | ||
0 2 3 4 5 6 7 8 | | | 0 8 = 0: 0 8 = 8: 0 4 |
0 2 3 4 5 6 7 9 | | | 0 2 5 = 0: 0 2 5 = 2: 0 3 10 = 5: 0 7 9 |
Scale Degrees: 12344566 | ||
0 1 3 5 6 7 8 9 | | | 1 5 8 = 1: 0 4 7 = 5: 0 3 8 = 8: 0 5 9 |
0 2 3 5 6 7 8 9 | | | 2 5 8 = 2: 0 3 6 = 5: 0 3 9 = 8: 0 6 9 |
diamorphic with supplementary 4th (Scale Degrees: 12344567) | ||
0 1 3 5 6 7 8 11 | | | 1 8 11 = 1: 0 7 10 = 8: 0 3 5 = 11: 0 2 9 |
0 1 3 5 6 7 9 10 | | | 3 5 6 = 3: 0 2 3 = 5: 0 1 10 = 6: 0 9 11 |
0 1 3 5 6 7 9 11 | | | 5 11 = 5: 0 6 = 11: 0 6 |
0 1 3 5 6 7 10 11 | | | 3 6 11 = 3: 0 3 8 = 6: 0 5 9 = 11: 0 4 7 |
0 1 4 5 6 7 8 9 | | | 0 1 5 9 = 0: 0 1 5 9 = 1: 0 4 8 11 = 5: 0 4 7 8 = 9: 0 3 4 8 |
0 1 4 5 6 7 8 10 | | | 0 1 6 = 0: 0 1 6 = 1: 0 5 11 = 6: 0 6 7 |
0 1 4 5 6 7 8 11 | | | 0 1 4 = 0: 0 1 4 = 1: 0 3 11 = 4: 0 8 9 |
0 1 4 5 6 7 9 10 | | | 0 5 6 9 = 0: 0 5 6 9 = 5: 0 1 4 7 = 6: 0 3 6 11 = 9: 0 3 8 9 |
0 1 4 5 6 7 9 11 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 4 5 6 7 10 11 | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 1 4 5 6 8 10 11 = Persian | | | 1 4 6 = 1: 0 3 5 = 4: 0 2 9 = 6: 0 7 10 |
0 2 3 5 6 7 8 10 | | | 3 8 10 = 3: 0 5 7 = 8: 0 2 7 = 10: 0 5 10 |
0 2 3 5 6 7 8 11 = Algerian | | | 7 8 11 = 7: 0 1 4 = 8: 0 3 11 = 11: 0 8 9 |
0 2 3 5 6 7 9 10 | | | 2 3 5 10 = 2: 0 1 3 8 = 3: 0 2 7 11 = 5: 0 5 9 10 = 10: 0 4 5 7 |
0 2 3 5 6 7 9 11 | | | 2 5 7 11 = 2: 0 3 5 9 = 5: 0 2 6 9 = 7: 0 4 7 10 = 11: 0 3 6 8 |
0 2 3 5 6 7 10 11 = 2367AB & min. pentat. | | | 3 7 10 11 = 3: 0 4 7 8 = 7: 0 3 4 8 = 10: 0 1 5 9 = 11: 0 4 8 11 |
0 2 3 5 6 8 9 11 = dim. scale, Octatonic | | | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 |
0 2 4 5 6 7 8 10 | | | 0 10 = 0: 0 10 = 10: 0 2 |
0 2 4 5 6 7 8 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 2 4 5 6 7 9 10 | | | 0 2 5 10 = 0: 0 2 5 10 = 2: 0 3 8 10 = 5: 0 5 7 9 = 10: 0 2 4 7 |
0 2 4 5 6 7 9 11 = iolydian | | | 0 2 5 7 = 0: 0 2 5 7 = 2: 0 3 5 10 = 5: 0 2 7 9 = 7: 0 5 7 10 |
0 2 4 5 6 7 10 11 | | | 0 7 10 = 0: 0 7 10 = 7: 0 3 5 = 10: 0 2 9 |
0 3 4 5 6 7 8 10 | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 3 4 5 6 7 8 11 | | | 0 4 8 11 = 0: 0 4 8 11 = 4: 0 4 7 8 = 8: 0 3 4 8 = 11: 0 1 5 9 |
0 3 4 5 6 7 9 10 | | | 0 3 5 = 0: 0 3 5 = 3: 0 2 9 = 5: 0 7 10 |
0 3 4 5 6 7 9 11 | | | 0 5 11 = 0: 0 5 11 = 5: 0 6 7 = 11: 0 1 6 |
0 3 4 5 6 7 10 11 | | | 0 3 11 = 0: 0 3 11 = 3: 0 8 9 = 11: 0 1 4 |
diamorphic with supplementary 6th (Scale Degrees: 12345667) | ||
0 1 3 5 6 9 10 11 | | | 5 6 11 = 5: 0 1 6 = 6: 0 5 11 = 11: 0 6 7 |
0 1 3 5 7 8 9 10 | | | 1 3 5 8 = 1: 0 2 4 7 = 3: 0 2 5 10 = 5: 0 3 8 10 = 8: 0 5 7 9 |
0 1 3 5 7 8 9 11 | | | 1 5 8 = 1: 0 4 7 = 5: 0 3 8 = 8: 0 5 9 |
0 1 3 5 7 8 10 11 | | | 1 3 8 = 1: 0 2 7 = 3: 0 5 10 = 8: 0 5 7 |
0 1 3 5 7 9 10 11 | | | 3 5 = 3: 0 2 = 5: 0 10 |
0 1 3 6 7 8 9 10 | | | 3 6 8 = 3: 0 3 5 = 6: 0 2 9 = 8: 0 7 10 |
0 1 3 6 7 8 9 11 | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 1 3 6 7 8 10 11 | | | 3 6 8 11 = 3: 0 3 5 8 = 6: 0 2 5 9 = 8: 0 3 7 10 = 11: 0 4 7 9 |
0 1 3 6 7 9 10 11 | | | 3 6 11 = 3: 0 3 8 = 6: 0 5 9 = 11: 0 4 7 |
0 1 4 5 7 8 9 10 = Gayakapriya, 014589 & dom.7 | | | 0 1 5 9 = 0: 0 1 5 9 = 1: 0 4 8 11 = 5: 0 4 7 8 = 9: 0 3 4 8 |
0 1 4 5 7 8 9 11 = 014589 & M7 | | | 0 1 4 5 9 = 0: 0 1 4 5 9 = 1: 0 3 4 8 11 = 4: 0 1 5 8 9 = 5: 0 4 7 8 11 = 9: 0 3 4 7 8 |
0 1 4 5 7 8 10 11 = Vakulabharanam | | | 0 1 4 = 0: 0 1 4 = 1: 0 3 11 = 4: 0 8 9 |
0 1 4 5 7 9 10 11 | | | 0 5 9 = 0: 0 5 9 = 5: 0 4 7 = 9: 0 3 8 |
0 1 4 6 7 8 9 10 | | | 0 6 9 = 0: 0 6 9 = 6: 0 3 6 = 9: 0 3 9 |
0 1 4 6 7 8 9 11 | | | 0 4 9 = 0: 0 4 9 = 4: 0 5 8 = 9: 0 3 7 |
0 1 4 6 7 8 10 11 | | | 0 4 6 = 0: 0 4 6 = 4: 0 2 8 = 6: 0 6 10 |
0 1 4 6 7 9 10 11 | | | 0 6 9 = 0: 0 6 9 = 6: 0 3 6 = 9: 0 3 9 |
0 2 3 5 7 8 9 10 = aeodorian | | | 3 5 8 10 = 3: 0 2 5 7 = 5: 0 3 5 10 = 8: 0 2 7 9 = 10: 0 5 7 10 |
0 2 3 5 7 8 9 11 = Bebop mel. min. | | | 5 7 8 = 5: 0 2 3 = 7: 0 1 10 = 8: 0 9 11 |
0 2 3 5 7 8 10 11 = Bebop harm. min. | | | 3 7 8 10 = 3: 0 4 5 7 = 7: 0 1 3 8 = 8: 0 2 7 11 = 10: 0 5 9 10 |
0 2 3 5 7 9 10 11 = dorian & mel. min. | | | 3 5 7 10 = 3: 0 2 4 7 = 5: 0 2 5 10 = 7: 0 3 8 10 = 10: 0 5 7 9 |
0 2 3 5 8 9 10 11 | | | 5 8 10 = 5: 0 3 5 = 8: 0 2 9 = 10: 0 7 10 |
0 2 3 6 7 8 9 10 = Syamalangi | | | 2 3 8 = 2: 0 1 6 = 3: 0 5 11 = 8: 0 6 7 |
0 2 3 6 7 8 9 11 | | | 2 7 8 11 = 2: 0 5 6 9 = 7: 0 1 4 7 = 8: 0 3 6 11 = 11: 0 3 8 9 |
0 2 3 6 7 8 10 11 | | | 3 7 8 11 = 3: 0 4 5 8 = 7: 0 1 4 8 = 8: 0 3 7 11 = 11: 0 4 8 9 |
0 2 3 6 7 9 10 11 = Romanian min., Ukranian Dorian | | | 2 3 7 11 = 2: 0 1 5 9 = 3: 0 4 8 11 = 7: 0 4 7 8 = 11: 0 3 4 8 |
0 2 4 5 6 9 10 11 | | | 2 5 10 = 2: 0 3 8 = 5: 0 5 9 = 10: 0 4 7 |
0 2 4 5 7 8 9 10 = Mararanjani | | | 0 5 10 = 0: 0 5 10 = 5: 0 5 7 = 10: 0 2 7 |
0 2 4 5 7 8 9 11 = bebop maj. | | | 0 4 5 7 = 0: 0 4 5 7 = 4: 0 1 3 8 = 5: 0 2 7 11 = 7: 0 5 9 10 |
0 2 4 5 7 8 10 11 = Charukesi | | | 0 4 7 10 = 0: 0 4 7 10 = 4: 0 3 6 8 = 7: 0 3 5 9 = 10: 0 2 6 9 |
0 2 4 5 7 9 10 11 = bebop dominant, iomixolydian | | | 0 5 7 10 = 0: 0 5 7 10 = 5: 0 2 5 7 = 7: 0 3 5 10 = 10: 0 2 7 9 |
0 2 4 6 7 8 9 10 | | | 0 2 = 0: 0 2 = 2: 0 10 |
0 2 4 6 7 8 9 11 | | | 0 2 4 7 = 0: 0 2 4 7 = 2: 0 2 5 10 = 4: 0 3 8 10 = 7: 0 5 7 9 |
0 2 4 6 7 8 10 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 2 4 6 7 9 10 11 | | | 0 2 7 = 0: 0 2 7 = 2: 0 5 10 = 7: 0 5 7 |
0 3 4 5 6 9 10 11 | | | 5 11 = 5: 0 6 = 11: 0 6 |
0 3 4 5 7 8 9 10 = Yagapriya | | | 0 3 5 8 = 0: 0 3 5 8 = 3: 0 2 5 9 = 5: 0 3 7 10 = 8: 0 4 7 9 |
0 3 4 5 7 8 9 11 | | | 0 4 5 8 = 0: 0 4 5 8 = 4: 0 1 4 8 = 5: 0 3 7 11 = 8: 0 4 8 9 |
0 3 4 5 7 8 10 11 | | | 0 3 4 8 = 0: 0 3 4 8 = 3: 0 1 5 9 = 4: 0 4 8 11 = 8: 0 4 7 8 |
0 3 4 5 7 9 10 11 | | | 0 3 5 = 0: 0 3 5 = 3: 0 2 9 = 5: 0 7 10 |
0 3 4 6 7 8 9 10 | | | 0 3 8 = 0: 0 3 8 = 3: 0 5 9 = 8: 0 4 7 |
0 3 4 6 7 8 9 11 | | | 0 4 8 11 = 0: 0 4 8 11 = 4: 0 4 7 8 = 8: 0 3 4 8 = 11: 0 1 5 9 |
0 3 4 6 7 8 10 11 | | | 0 3 4 8 11 = 0: 0 3 4 8 11 = 3: 0 1 5 8 9 = 4: 0 4 7 8 11 = 8: 0 3 4 7 8 = 11: 0 1 4 5 9 |
0 3 4 6 7 9 10 11 | | | 0 3 11 = 0: 0 3 11 = 3: 0 8 9 = 11: 0 1 4 |
Scale Degrees: 12356677 | ||
0 1 3 7 8 9 10 11 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 1 4 7 8 9 10 11 | | | 0 4 9 = 0: 0 4 9 = 4: 0 5 8 = 9: 0 3 7 |
0 2 3 7 8 9 10 11 | | | 3 7 8 = 3: 0 4 5 = 7: 0 1 8 = 8: 0 7 11 |
0 2 4 7 8 9 10 11 | | | 0 4 7 = 0: 0 4 7 = 4: 0 3 8 = 7: 0 5 9 |
0 3 4 7 8 9 10 11 | | | 0 3 4 8 = 0: 0 3 4 8 = 3: 0 1 5 9 = 4: 0 4 8 11 = 8: 0 4 7 8 |
Scale Degrees: 12445667 | ||
0 1 5 6 7 9 10 11 | | | 5 6 = 5: 0 1 = 6: 0 11 |
0 2 5 6 7 8 9 10 | | | 2 5 10 = 2: 0 3 8 = 5: 0 5 9 = 10: 0 4 7 |
0 2 5 6 7 8 10 11 | | | 7 10 = 7: 0 3 = 10: 0 9 |
0 2 5 6 7 9 10 11 | | | 2 5 7 10 = 2: 0 3 5 8 = 5: 0 2 5 9 = 7: 0 3 7 10 = 10: 0 4 7 9 |
Scale Degrees: 12456677 | ||
0 1 5 7 8 9 10 11 | | | 1 5 = 1: 0 4 = 5: 0 8 |
0 1 6 7 8 9 10 11 | | | 6 = 6: 0 |
0 2 5 7 8 9 10 11 | | | 5 7 10 = 5: 0 2 5 = 7: 0 3 10 = 10: 0 7 9 |
0 2 6 7 8 9 10 11 | | | 2 7 = 2: 0 5 = 7: 0 7 |
Scale Degrees: 13445667 | ||
0 3 5 6 7 8 9 10 | | | 3 5 8 = 3: 0 2 5 = 5: 0 3 10 = 8: 0 7 9 |
0 3 5 6 7 8 9 11 | | | 5 8 11 = 5: 0 3 6 = 8: 0 3 9 = 11: 0 6 9 |
0 3 5 6 7 8 10 11 | | | 3 8 11 = 3: 0 5 8 = 8: 0 3 7 = 11: 0 4 9 |
0 3 5 6 7 9 10 11 | | | 3 5 11 = 3: 0 2 8 = 5: 0 6 10 = 11: 0 4 6 |
0 4 5 6 7 8 9 10 | | | 0 5 = 0: 0 5 = 5: 0 7 |
0 4 5 6 7 8 10 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 4 5 6 7 9 10 11 | | | 0 5 = 0: 0 5 = 5: 0 7 |
Scale Degrees: 13456677 | ||
0 3 5 7 8 9 10 11 | | | 3 5 8 = 3: 0 2 5 = 5: 0 3 10 = 8: 0 7 9 |
0 3 6 7 8 9 10 11 | | | 3 8 11 = 3: 0 5 8 = 8: 0 3 7 = 11: 0 4 9 |
0 4 5 7 8 9 10 11 | | | 0 4 5 = 0: 0 4 5 = 4: 0 1 8 = 5: 0 7 11 |
0 4 6 7 8 9 10 11 | | | 0 4 = 0: 0 4 = 4: 0 8 |
Scale Degrees: 122334456 | ||
0 1 2 3 4 5 6 7 8 = 1st 9chromatics | | | 0 1 8 = 0: 0 1 8 = 1: 0 7 11 = 8: 0 4 5 |
0 1 2 3 4 5 6 7 9 | | | 0 2 5 9 = 0: 0 2 5 9 = 2: 0 3 7 10 = 5: 0 4 7 9 = 9: 0 3 5 8 |
Scale Degrees: 122334457 | ||
0 1 2 3 4 5 6 7 10 | | | 0 3 6 10 = 0: 0 3 6 10 = 3: 0 3 7 9 = 6: 0 4 6 9 = 10: 0 2 5 8 |
0 1 2 3 4 5 6 7 11 | | | 0 7 11 = 0: 0 7 11 = 7: 0 4 5 = 11: 0 1 8 |
Scale Degrees: 122334566 | ||
0 1 2 3 4 5 7 8 9 | | | 0 1 5 8 9 = 0: 0 1 5 8 9 = 1: 0 4 7 8 11 = 5: 0 3 4 7 8 = 8: 0 1 4 5 9 = 9: 0 3 4 8 11 |
0 1 2 3 4 6 7 8 9 | | | 0 2 8 9 = 0: 0 2 8 9 = 2: 0 6 7 10 = 8: 0 1 4 6 = 9: 0 3 5 11 |
diamorphic with supplementary 2nd, 3rd (Scale Degrees: 122334567) | ||
0 1 2 3 4 5 6 8 10 = whole tone & locrian | | | 1 6 8 10 = 1: 0 5 7 9 = 6: 0 2 4 7 = 8: 0 2 5 10 = 10: 0 3 8 10 |
0 1 2 3 4 5 6 9 10 | | | 2 5 6 9 10 = 2: 0 3 4 7 8 = 5: 0 1 4 5 9 = 6: 0 3 4 8 11 = 9: 0 1 5 8 9 = 10: 0 4 7 8 11 |
0 1 2 3 4 5 7 8 10 | | | 0 1 3 8 10 = 0: 0 1 3 8 10 = 1: 0 2 7 9 11 = 3: 0 5 7 9 10 = 8: 0 2 4 5 7 = 10: 0 2 3 5 10 |
0 1 2 3 4 5 7 8 11 | | | 0 1 4 7 8 = 0: 0 1 4 7 8 = 1: 0 3 6 7 11 = 4: 0 3 4 8 9 = 7: 0 1 5 6 9 = 8: 0 4 5 8 11 |
0 1 2 3 4 5 7 9 10 | | | 0 3 5 9 10 = 0: 0 3 5 9 10 = 3: 0 2 6 7 9 = 5: 0 4 5 7 10 = 9: 0 1 3 6 8 = 10: 0 2 5 7 11 |
0 1 2 3 4 5 7 9 11 | | | 0 5 7 9 = 0: 0 5 7 9 = 5: 0 2 4 7 = 7: 0 2 5 10 = 9: 0 3 8 10 |
0 1 2 3 4 5 7 10 11 | | | 0 3 7 10 = 0: 0 3 7 10 = 3: 0 4 7 9 = 7: 0 3 5 8 = 10: 0 2 5 9 |
0 1 2 3 4 6 7 8 10 | | | 0 3 6 8 = 0: 0 3 6 8 = 3: 0 3 5 9 = 6: 0 2 6 9 = 8: 0 4 7 10 |
0 1 2 3 4 6 7 8 11 | | | 0 4 7 8 11 = 0: 0 4 7 8 11 = 4: 0 3 4 7 8 = 7: 0 1 4 5 9 = 8: 0 3 4 8 11 = 11: 0 1 5 8 9 |
0 1 2 3 4 6 7 9 10 | | | 0 2 3 6 9 = 0: 0 2 3 6 9 = 2: 0 1 4 7 10 = 3: 0 3 6 9 11 = 6: 0 3 6 8 9 = 9: 0 3 5 6 9 |
0 1 2 3 4 6 7 9 11 | | | 0 2 7 9 11 = 0: 0 2 7 9 11 = 2: 0 5 7 9 10 = 7: 0 2 4 5 7 = 9: 0 2 3 5 10 = 11: 0 1 3 8 10 |
0 1 2 3 4 6 7 10 11 | | | 0 3 6 7 11 = 0: 0 3 6 7 11 = 3: 0 3 4 8 9 = 6: 0 1 5 6 9 = 7: 0 4 5 8 11 = 11: 0 1 4 7 8 |
0 1 2 3 4 6 8 10 11 | | | 4 6 8 11 = 4: 0 2 4 7 = 6: 0 2 5 10 = 8: 0 3 8 10 = 11: 0 5 7 9 |
Scale Degrees: 122335667 | ||
0 1 2 3 4 7 8 9 10 | | | 0 3 8 9 = 0: 0 3 8 9 = 3: 0 5 6 9 = 8: 0 1 4 7 = 9: 0 3 6 11 |
0 1 2 3 4 7 8 9 11 | | | 0 4 7 8 9 = 0: 0 4 7 8 9 = 4: 0 3 4 5 8 = 7: 0 1 2 5 9 = 8: 0 1 4 8 11 = 9: 0 3 7 10 11 |
0 1 2 3 4 7 8 10 11 | | | 0 3 4 7 8 = 0: 0 3 4 7 8 = 3: 0 1 4 5 9 = 4: 0 3 4 8 11 = 7: 0 1 5 8 9 = 8: 0 4 7 8 11 |
0 1 2 3 4 7 9 10 11 | | | 0 3 7 9 = 0: 0 3 7 9 = 3: 0 4 6 9 = 7: 0 2 5 8 = 9: 0 3 6 10 |
Scale Degrees: 122344566 | ||
0 1 2 3 5 6 7 8 9 | | | 1 2 5 8 = 1: 0 1 4 7 = 2: 0 3 6 11 = 5: 0 3 8 9 = 8: 0 5 6 9 |
0 1 2 4 5 6 7 8 9 | | | 0 1 2 5 9 = 0: 0 1 2 5 9 = 1: 0 1 4 8 11 = 2: 0 3 7 10 11 = 5: 0 4 7 8 9 = 9: 0 3 4 5 8 |
0 2 3 4 5 6 7 8 9 | | | 0 2 5 8 = 0: 0 2 5 8 = 2: 0 3 6 10 = 5: 0 3 7 9 = 8: 0 4 6 9 |
diamorphic with supplementary 2nd, 4th (Scale Degrees: 122344567) | ||
0 1 2 3 5 6 7 8 10 | | | 1 3 6 8 10 = 1: 0 2 5 7 9 = 3: 0 3 5 7 10 = 6: 0 2 4 7 9 = 8: 0 2 5 7 10 = 10: 0 3 5 8 10 |
0 1 2 3 5 6 7 8 11 | | | 1 7 8 11 = 1: 0 6 7 10 = 7: 0 1 4 6 = 8: 0 3 5 11 = 11: 0 2 8 9 |
0 1 2 3 5 6 7 9 10 = 12569A & m7, 12569A & min. pentat. | | | 2 3 5 6 10 = 2: 0 1 3 4 8 = 3: 0 2 3 7 11 = 5: 0 1 5 9 10 = 6: 0 4 8 9 11 = 10: 0 4 5 7 8 |
0 1 2 3 5 6 7 9 11 | | | 2 5 7 11 = 2: 0 3 5 9 = 5: 0 2 6 9 = 7: 0 4 7 10 = 11: 0 3 6 8 |
0 1 2 3 5 6 7 10 11 | | | 3 6 7 10 11 = 3: 0 3 4 7 8 = 6: 0 1 4 5 9 = 7: 0 3 4 8 11 = 10: 0 1 5 8 9 = 11: 0 4 7 8 11 |
0 1 2 3 5 6 8 9 11 | | | 1 2 5 8 11 = 1: 0 1 4 7 10 = 2: 0 3 6 9 11 = 5: 0 3 6 8 9 = 8: 0 3 5 6 9 = 11: 0 2 3 6 9 |
0 1 2 4 5 6 7 8 10 | | | 0 1 6 10 = 0: 0 1 6 10 = 1: 0 5 9 11 = 6: 0 4 6 7 = 10: 0 2 3 8 |
0 1 2 4 5 6 7 8 11 | | | 0 1 4 7 = 0: 0 1 4 7 = 1: 0 3 6 11 = 4: 0 3 8 9 = 7: 0 5 6 9 |
0 1 2 4 5 6 7 9 10 = 12569A & dom. 7 | | | 0 2 5 6 9 10 = 0: 0 2 5 6 9 10 = 2: 0 3 4 7 8 10 = 5: 0 1 4 5 7 9 = 6: 0 3 4 6 8 11 = 9: 0 1 3 5 8 9 = 10: 0 2 4 7 8 11 |
0 1 2 4 5 6 7 9 11 | | | 0 2 5 7 9 = 0: 0 2 5 7 9 = 2: 0 3 5 7 10 = 5: 0 2 4 7 9 = 7: 0 2 5 7 10 = 9: 0 3 5 8 10 |
0 1 2 4 5 6 7 10 11 | | | 0 6 7 10 = 0: 0 6 7 10 = 6: 0 1 4 6 = 7: 0 3 5 11 = 10: 0 2 8 9 |
0 1 3 4 5 6 7 8 10 | | | 0 1 3 6 8 = 0: 0 1 3 6 8 = 1: 0 2 5 7 11 = 3: 0 3 5 9 10 = 6: 0 2 6 7 9 = 8: 0 4 5 7 10 |
0 1 3 4 5 6 7 8 11 | | | 0 1 4 8 11 = 0: 0 1 4 8 11 = 1: 0 3 7 10 11 = 4: 0 4 7 8 9 = 8: 0 3 4 5 8 = 11: 0 1 2 5 9 |
0 1 3 4 5 6 7 9 10 | | | 0 3 5 6 9 = 0: 0 3 5 6 9 = 3: 0 2 3 6 9 = 5: 0 1 4 7 10 = 6: 0 3 6 9 11 = 9: 0 3 6 8 9 |
0 1 3 4 5 6 7 9 11 | | | 0 5 9 11 = 0: 0 5 9 11 = 5: 0 4 6 7 = 9: 0 2 3 8 = 11: 0 1 6 10 |
0 1 3 4 5 6 7 10 11 | | | 0 3 6 11 = 0: 0 3 6 11 = 3: 0 3 8 9 = 6: 0 5 6 9 = 11: 0 1 4 7 |
0 2 3 4 5 6 7 8 10 = whole tone & aeolean | | | 0 3 8 10 = 0: 0 3 8 10 = 3: 0 5 7 9 = 8: 0 2 4 7 = 10: 0 2 5 10 |
0 2 3 4 5 6 7 8 11 | | | 0 4 7 8 11 = 0: 0 4 7 8 11 = 4: 0 3 4 7 8 = 7: 0 1 4 5 9 = 8: 0 3 4 8 11 = 11: 0 1 5 8 9 |
0 2 3 4 5 6 7 9 10 | | | 0 2 3 5 10 = 0: 0 2 3 5 10 = 2: 0 1 3 8 10 = 3: 0 2 7 9 11 = 5: 0 5 7 9 10 = 10: 0 2 4 5 7 |
0 2 3 4 5 6 7 9 11 = lydian & mel. min. | | | 0 2 5 7 11 = 0: 0 2 5 7 11 = 2: 0 3 5 9 10 = 5: 0 2 6 7 9 = 7: 0 4 5 7 10 = 11: 0 1 3 6 8 |
0 2 3 4 5 6 7 10 11 | | | 0 3 7 10 11 = 0: 0 3 7 10 11 = 3: 0 4 7 8 9 = 7: 0 3 4 5 8 = 10: 0 1 2 5 9 = 11: 0 1 4 8 11 |
diamorphic with supplementary 2nd, 6th (Scale Degrees: 122345667) | ||
0 1 2 3 5 7 8 9 10 = phrygidorian | | | 1 3 5 8 10 = 1: 0 2 4 7 9 = 3: 0 2 5 7 10 = 5: 0 3 5 8 10 = 8: 0 2 5 7 9 = 10: 0 3 5 7 10 |
0 1 2 3 5 7 8 9 11 | | | 1 5 7 8 = 1: 0 4 6 7 = 5: 0 2 3 8 = 7: 0 1 6 10 = 8: 0 5 9 11 |
0 1 2 3 5 7 8 10 11 = phrygian & harm. min. | | | 1 3 7 8 10 = 1: 0 2 6 7 9 = 3: 0 4 5 7 10 = 7: 0 1 3 6 8 = 8: 0 2 5 7 11 = 10: 0 3 5 9 10 |
0 1 2 3 5 7 9 10 11 | | | 3 5 7 10 = 3: 0 2 4 7 = 5: 0 2 5 10 = 7: 0 3 8 10 = 10: 0 5 7 9 |
0 1 2 3 6 7 8 9 10 | | | 2 3 6 8 = 2: 0 1 4 6 = 3: 0 3 5 11 = 6: 0 2 8 9 = 8: 0 6 7 10 |
0 1 2 3 6 7 8 9 11 | | | 2 7 8 11 = 2: 0 5 6 9 = 7: 0 1 4 7 = 8: 0 3 6 11 = 11: 0 3 8 9 |
0 1 2 3 6 7 8 10 11 | | | 3 6 7 8 11 = 3: 0 3 4 5 8 = 6: 0 1 2 5 9 = 7: 0 1 4 8 11 = 8: 0 3 7 10 11 = 11: 0 4 7 8 9 |
0 1 2 3 6 7 9 10 11 | | | 2 3 6 7 11 = 2: 0 1 4 5 9 = 3: 0 3 4 8 11 = 6: 0 1 5 8 9 = 7: 0 4 7 8 11 = 11: 0 3 4 7 8 |
0 1 2 4 5 7 8 9 10 | | | 0 1 5 9 10 = 0: 0 1 5 9 10 = 1: 0 4 8 9 11 = 5: 0 4 5 7 8 = 9: 0 1 3 4 8 = 10: 0 2 3 7 11 |
0 1 2 4 5 7 8 9 11 | | | 0 1 4 5 7 9 = 0: 0 1 4 5 7 9 = 1: 0 3 4 6 8 11 = 4: 0 1 3 5 8 9 = 5: 0 2 4 7 8 11 = 7: 0 2 5 6 9 10 = 9: 0 3 4 7 8 10 |
0 1 2 4 5 7 8 10 11 | | | 0 1 4 7 10 = 0: 0 1 4 7 10 = 1: 0 3 6 9 11 = 4: 0 3 6 8 9 = 7: 0 3 5 6 9 = 10: 0 2 3 6 9 |
0 1 2 4 5 7 9 10 11 | | | 0 5 7 9 10 = 0: 0 5 7 9 10 = 5: 0 2 4 5 7 = 7: 0 2 3 5 10 = 9: 0 1 3 8 10 = 10: 0 2 7 9 11 |
0 1 2 4 6 7 8 9 10 | | | 0 2 6 9 = 0: 0 2 6 9 = 2: 0 4 7 10 = 6: 0 3 6 8 = 9: 0 3 5 9 |
0 1 2 4 6 7 8 9 11 = 9 in 5ths | | | 0 2 4 7 9 = 0: 0 2 4 7 9 = 2: 0 2 5 7 10 = 4: 0 3 5 8 10 = 7: 0 2 5 7 9 = 9: 0 3 5 7 10 |
0 1 2 4 6 7 8 10 11 | | | 0 4 6 7 = 0: 0 4 6 7 = 4: 0 2 3 8 = 6: 0 1 6 10 = 7: 0 5 9 11 |
0 1 2 4 6 7 9 10 11 | | | 0 2 6 7 9 = 0: 0 2 6 7 9 = 2: 0 4 5 7 10 = 6: 0 1 3 6 8 = 7: 0 2 5 7 11 = 9: 0 3 5 9 10 |
0 1 3 4 5 7 8 9 10 = 014589 & min. pentat. | | | 0 1 3 5 8 9 = 0: 0 1 3 5 8 9 = 1: 0 2 4 7 8 11 = 3: 0 2 5 6 9 10 = 5: 0 3 4 7 8 10 = 8: 0 1 4 5 7 9 = 9: 0 3 4 6 8 11 |
0 1 3 4 5 7 8 9 11 = tcherpnin enneatonic | | | 0 1 4 5 8 9 = 0: 0 1 4 5 8 9 = 1: 0 3 4 7 8 11 = 4: 0 1 4 5 8 9 = 5: 0 3 4 7 8 11 = 8: 0 1 4 5 8 9 = 9: 0 3 4 7 8 11 |
0 1 3 4 5 7 8 10 11 = phrygian & aug. scale | | | 0 1 3 4 8 = 0: 0 1 3 4 8 = 1: 0 2 3 7 11 = 3: 0 1 5 9 10 = 4: 0 4 8 9 11 = 8: 0 4 5 7 8 |
0 1 3 4 5 7 9 10 11 | | | 0 3 5 9 = 0: 0 3 5 9 = 3: 0 2 6 9 = 5: 0 4 7 10 = 9: 0 3 6 8 |
0 1 3 4 6 7 8 9 10 | | | 0 3 6 8 9 = 0: 0 3 6 8 9 = 3: 0 3 5 6 9 = 6: 0 2 3 6 9 = 8: 0 1 4 7 10 = 9: 0 3 6 9 11 |
0 1 3 4 6 7 8 9 11 | | | 0 4 8 9 11 = 0: 0 4 8 9 11 = 4: 0 4 5 7 8 = 8: 0 1 3 4 8 = 9: 0 2 3 7 11 = 11: 0 1 5 9 10 |
0 1 3 4 6 7 8 10 11 | | | 0 3 4 6 8 11 = 0: 0 3 4 6 8 11 = 3: 0 1 3 5 8 9 = 4: 0 2 4 7 8 11 = 6: 0 2 5 6 9 10 = 8: 0 3 4 7 8 10 = 11: 0 1 4 5 7 9 |
0 1 3 4 6 7 9 10 11 | | | 0 3 6 9 11 = 0: 0 3 6 9 11 = 3: 0 3 6 8 9 = 6: 0 3 5 6 9 = 9: 0 2 3 6 9 = 11: 0 1 4 7 10 |
0 2 3 4 5 6 9 10 11 | | | 2 5 10 11 = 2: 0 3 8 9 = 5: 0 5 6 9 = 10: 0 1 4 7 = 11: 0 3 6 11 |
0 2 3 4 5 7 8 9 10 = mixaeolean | | | 0 3 5 8 10 = 0: 0 3 5 8 10 = 3: 0 2 5 7 9 = 5: 0 3 5 7 10 = 8: 0 2 4 7 9 = 10: 0 2 5 7 10 |
0 2 3 4 5 7 8 9 11 = ionian & harm. min. | | | 0 4 5 7 8 = 0: 0 4 5 7 8 = 4: 0 1 3 4 8 = 5: 0 2 3 7 11 = 7: 0 1 5 9 10 = 8: 0 4 8 9 11 |
0 2 3 4 5 7 8 10 11 = aeolean & aug. scale, 03478B & bebop min. | | | 0 3 4 7 8 10 = 0: 0 3 4 7 8 10 = 3: 0 1 4 5 7 9 = 4: 0 3 4 6 8 11 = 7: 0 1 3 5 8 9 = 8: 0 2 4 7 8 11 = 10: 0 2 5 6 9 10 |
0 2 3 4 5 7 9 10 11 = iodorian, mixolydian & mel. min. | | | 0 3 5 7 10 = 0: 0 3 5 7 10 = 3: 0 2 4 7 9 = 5: 0 2 5 7 10 = 7: 0 3 5 8 10 = 10: 0 2 5 7 9 |
0 2 3 4 6 7 8 9 10 | | | 0 2 3 8 = 0: 0 2 3 8 = 2: 0 1 6 10 = 3: 0 5 9 11 = 8: 0 4 6 7 |
0 2 3 4 6 7 8 9 11 = lydian & aug. scale | | | 0 2 4 7 8 11 = 0: 0 2 4 7 8 11 = 2: 0 2 5 6 9 10 = 4: 0 3 4 7 8 10 = 7: 0 1 4 5 7 9 = 8: 0 3 4 6 8 11 = 11: 0 1 3 5 8 9 |
0 2 3 4 6 7 8 10 11 = 2367AB & 048 | | | 0 3 4 7 8 11 = 0: 0 3 4 7 8 11 = 3: 0 1 4 5 8 9 = 4: 0 3 4 7 8 11 = 7: 0 1 4 5 8 9 = 8: 0 3 4 7 8 11 = 11: 0 1 4 5 8 9 |
0 2 3 4 6 7 9 10 11 | | | 0 2 3 7 11 = 0: 0 2 3 7 11 = 2: 0 1 5 9 10 = 3: 0 4 8 9 11 = 7: 0 4 5 7 8 = 11: 0 1 3 4 8 |
Scale Degrees: 122356677 | ||
0 1 3 4 7 8 9 10 11 | | | 0 3 4 8 9 = 0: 0 3 4 8 9 = 3: 0 1 5 6 9 = 4: 0 4 5 8 11 = 8: 0 1 4 7 8 = 9: 0 3 6 7 11 |
0 2 3 4 7 8 9 10 11 | | | 0 3 4 7 8 = 0: 0 3 4 7 8 = 3: 0 1 4 5 9 = 4: 0 3 4 8 11 = 7: 0 1 5 8 9 = 8: 0 4 7 8 11 |
Scale Degrees: 122456677 | ||
0 1 2 5 7 8 9 10 11 = Kanakangi | | | 1 5 7 10 = 1: 0 4 6 9 = 5: 0 2 5 8 = 7: 0 3 6 10 = 10: 0 3 7 9 |
0 1 2 6 7 8 9 10 11 | | | 2 6 7 = 2: 0 4 5 = 6: 0 1 8 = 7: 0 7 11 |
Scale Degrees: 123356677 | ||
0 1 2 3 7 8 9 10 11 | | | 3 7 8 = 3: 0 4 5 = 7: 0 1 8 = 8: 0 7 11 |
0 1 2 4 7 8 9 10 11 | | | 0 4 7 9 = 0: 0 4 7 9 = 4: 0 3 5 8 = 7: 0 2 5 9 = 9: 0 3 7 10 |
diamorphic with supplementary 4th, 6th (Scale Degrees: 123445667) | ||
0 1 3 5 6 7 8 9 10 | | | 1 3 5 6 8 = 1: 0 2 4 5 7 = 3: 0 2 3 5 10 = 5: 0 1 3 8 10 = 6: 0 2 7 9 11 = 8: 0 5 7 9 10 |
0 1 3 5 6 7 8 9 11 | | | 1 5 8 11 = 1: 0 4 7 10 = 5: 0 3 6 8 = 8: 0 3 5 9 = 11: 0 2 6 9 |
0 1 4 5 6 7 8 9 10 | | | 0 1 5 6 9 = 0: 0 1 5 6 9 = 1: 0 4 5 8 11 = 5: 0 1 4 7 8 = 6: 0 3 6 7 11 = 9: 0 3 4 8 9 |
0 1 4 5 6 7 8 9 11 | | | 0 1 4 5 9 = 0: 0 1 4 5 9 = 1: 0 3 4 8 11 = 4: 0 1 5 8 9 = 5: 0 4 7 8 11 = 9: 0 3 4 7 8 |
0 2 3 5 6 7 8 9 10 | | | 2 3 5 8 10 = 2: 0 1 3 6 8 = 3: 0 2 5 7 11 = 5: 0 3 5 9 10 = 8: 0 2 6 7 9 = 10: 0 4 5 7 10 |
0 2 3 5 6 7 8 9 11 | | | 2 5 7 8 11 = 2: 0 3 5 6 9 = 5: 0 2 3 6 9 = 7: 0 1 4 7 10 = 8: 0 3 6 9 11 = 11: 0 3 6 8 9 |
0 2 3 5 6 8 9 10 11 | | | 2 5 8 10 11 = 2: 0 3 6 8 9 = 5: 0 3 5 6 9 = 8: 0 2 3 6 9 = 10: 0 1 4 7 10 = 11: 0 3 6 9 11 |
0 2 4 5 6 7 8 9 10 = whole tone & mixolydian | | | 0 2 5 10 = 0: 0 2 5 10 = 2: 0 3 8 10 = 5: 0 5 7 9 = 10: 0 2 4 7 |
0 2 4 5 6 7 8 9 11 | | | 0 2 4 5 7 = 0: 0 2 4 5 7 = 2: 0 2 3 5 10 = 4: 0 1 3 8 10 = 5: 0 2 7 9 11 = 7: 0 5 7 9 10 |
diamorphic with supplementary 4th, 7th (Scale Degrees: 123445677) | ||
0 1 3 5 6 7 9 10 11 | | | 3 5 6 11 = 3: 0 2 3 8 = 5: 0 1 6 10 = 6: 0 5 9 11 = 11: 0 4 6 7 |
0 1 4 5 6 7 8 10 11 | | | 0 1 4 6 = 0: 0 1 4 6 = 1: 0 3 5 11 = 4: 0 2 8 9 = 6: 0 6 7 10 |
0 1 4 5 6 7 9 10 11 | | | 0 5 6 9 = 0: 0 5 6 9 = 5: 0 1 4 7 = 6: 0 3 6 11 = 9: 0 3 8 9 |
0 2 3 5 6 7 8 10 11 = 2367AB & bebop min. | | | 3 7 8 10 11 = 3: 0 4 5 7 8 = 7: 0 1 3 4 8 = 8: 0 2 3 7 11 = 10: 0 1 5 9 10 = 11: 0 4 8 9 11 |
0 2 3 5 6 7 9 10 11 = 2367AB & mel. min. | | | 2 3 5 7 10 11 = 2: 0 1 3 5 8 9 = 3: 0 2 4 7 8 11 = 5: 0 2 5 6 9 10 = 7: 0 3 4 7 8 10 = 10: 0 1 4 5 7 9 = 11: 0 3 4 6 8 11 |
0 2 4 5 6 7 8 10 11 | | | 0 4 7 10 = 0: 0 4 7 10 = 4: 0 3 6 8 = 7: 0 3 5 9 = 10: 0 2 6 9 |
0 2 4 5 6 7 9 10 11 = lydiomixlydian, full ryo | | | 0 2 5 7 10 = 0: 0 2 5 7 10 = 2: 0 3 5 8 10 = 5: 0 2 5 7 9 = 7: 0 3 5 7 10 = 10: 0 2 4 7 9 |
0 3 4 5 6 7 8 9 10 | | | 0 3 5 8 = 0: 0 3 5 8 = 3: 0 2 5 9 = 5: 0 3 7 10 = 8: 0 4 7 9 |
0 3 4 5 6 7 8 9 11 | | | 0 4 5 8 11 = 0: 0 4 5 8 11 = 4: 0 1 4 7 8 = 5: 0 3 6 7 11 = 8: 0 3 4 8 9 = 11: 0 1 5 6 9 |
0 3 4 5 6 7 8 10 11 | | | 0 3 4 8 11 = 0: 0 3 4 8 11 = 3: 0 1 5 8 9 = 4: 0 4 7 8 11 = 8: 0 3 4 7 8 = 11: 0 1 4 5 9 |
0 3 4 5 6 7 9 10 11 | | | 0 3 5 11 = 0: 0 3 5 11 = 3: 0 2 8 9 = 5: 0 6 7 10 = 11: 0 1 4 6 |
diamorphic with supplementary 6th, 7th (Scale Degrees: 123456677) | ||
0 1 3 5 7 8 9 10 11 | | | 1 3 5 8 = 1: 0 2 4 7 = 3: 0 2 5 10 = 5: 0 3 8 10 = 8: 0 5 7 9 |
0 1 3 6 7 8 9 10 11 | | | 3 6 8 11 = 3: 0 3 5 8 = 6: 0 2 5 9 = 8: 0 3 7 10 = 11: 0 4 7 9 |
0 1 4 5 7 8 9 10 11 | | | 0 1 4 5 9 = 0: 0 1 4 5 9 = 1: 0 3 4 8 11 = 4: 0 1 5 8 9 = 5: 0 4 7 8 11 = 9: 0 3 4 7 8 |
0 1 4 6 7 8 9 10 11 | | | 0 4 6 9 = 0: 0 4 6 9 = 4: 0 2 5 8 = 6: 0 3 6 10 = 9: 0 3 7 9 |
0 2 3 5 7 8 9 10 11 = dorian & harm. min., aeolean & mel. min. | | | 3 5 7 8 10 = 3: 0 2 4 5 7 = 5: 0 2 3 5 10 = 7: 0 1 3 8 10 = 8: 0 2 7 9 11 = 10: 0 5 7 9 10 |
0 2 3 6 7 8 9 10 11 | | | 2 3 7 8 11 = 2: 0 1 5 6 9 = 3: 0 4 5 8 11 = 7: 0 1 4 7 8 = 8: 0 3 6 7 11 = 11: 0 3 4 8 9 |
0 2 4 5 7 8 9 10 11 | | | 0 4 5 7 10 = 0: 0 4 5 7 10 = 4: 0 1 3 6 8 = 5: 0 2 5 7 11 = 7: 0 3 5 9 10 = 10: 0 2 6 7 9 |
0 2 4 6 7 8 9 10 11 = whole tone & lydian | | | 0 2 4 7 = 0: 0 2 4 7 = 2: 0 2 5 10 = 4: 0 3 8 10 = 7: 0 5 7 9 |
0 3 4 5 7 8 9 10 11 | | | 0 3 4 5 8 = 0: 0 3 4 5 8 = 3: 0 1 2 5 9 = 4: 0 1 4 8 11 = 5: 0 3 7 10 11 = 8: 0 4 7 8 9 |
0 3 4 6 7 8 9 10 11 | | | 0 3 4 8 11 = 0: 0 3 4 8 11 = 3: 0 1 5 8 9 = 4: 0 4 7 8 11 = 8: 0 3 4 7 8 = 11: 0 1 4 5 9 |
Scale Degrees: 134456667 | ||
0 3 5 6 7 8 9 10 11 | | | 3 5 8 11 = 3: 0 2 5 8 = 5: 0 3 6 10 = 8: 0 3 7 9 = 11: 0 4 6 9 |
Scale Degrees: 134456677 | ||
0 4 5 6 7 8 9 10 11 | | | 0 4 5 = 0: 0 4 5 = 4: 0 1 8 = 5: 0 7 11 |
chromatic decachord (Scale Degrees: 1223344566) | ||
0 1 2 3 4 5 6 7 8 9 = 1st 10 chromatics | | | 0 1 2 5 8 9 = 0: 0 1 2 5 8 9 = 1: 0 1 4 7 8 11 = 2: 0 3 6 7 10 11 = 5: 0 3 4 7 8 9 = 8: 0 1 4 5 6 9 = 9: 0 3 4 5 8 11 |
diamorphic with supplementary 2nd, 3rd, 4th (Scale Degrees: 1223344567) | ||
0 1 2 3 4 5 6 7 8 10 = whole tone & phrygian | | | 0 1 3 6 8 10 = 0: 0 1 3 6 8 10 = 1: 0 2 5 7 9 11 = 3: 0 3 5 7 9 10 = 6: 0 2 4 6 7 9 = 8: 0 2 4 5 7 10 = 10: 0 2 3 5 8 10 |
0 1 2 3 4 5 6 7 8 11 | | | 0 1 4 7 8 11 = 0: 0 1 4 7 8 11 = 1: 0 3 6 7 10 11 = 4: 0 3 4 7 8 9 = 7: 0 1 4 5 6 9 = 8: 0 3 4 5 8 11 = 11: 0 1 2 5 8 9 |
0 1 2 3 4 5 6 7 9 10 = auxdim. scale & dorian | | | 0 2 3 5 6 9 10 = 0: 0 2 3 5 6 9 10 = 2: 0 1 3 4 7 8 10 = 3: 0 2 3 6 7 9 11 = 5: 0 1 4 5 7 9 10 = 6: 0 3 4 6 8 9 11 = 9: 0 1 3 5 6 8 9 = 10: 0 2 4 5 7 8 11 |
0 1 2 3 4 5 6 7 9 11 | | | 0 2 5 7 9 11 = 0: 0 2 5 7 9 11 = 2: 0 3 5 7 9 10 = 5: 0 2 4 6 7 9 = 7: 0 2 4 5 7 10 = 9: 0 2 3 5 8 10 = 11: 0 1 3 6 8 10 |
0 1 2 3 4 5 6 7 10 11 | | | 0 3 6 7 10 11 = 0: 0 3 6 7 10 11 = 3: 0 3 4 7 8 9 = 6: 0 1 4 5 6 9 = 7: 0 3 4 5 8 11 = 10: 0 1 2 5 8 9 = 11: 0 1 4 7 8 11 |
diamorphic with supplementary 2nd, 3rd, 6th (Scale Degrees: 1223345667) | ||
0 1 2 3 4 5 6 8 9 10 | | | 1 2 5 6 8 9 10 = 1: 0 1 4 5 7 8 9 = 2: 0 3 4 6 7 8 11 = 5: 0 1 3 4 5 8 9 = 6: 0 2 3 4 7 8 11 = 8: 0 1 2 5 6 9 10 = 9: 0 1 4 5 8 9 11 = 10: 0 3 4 7 8 10 11 |
0 1 2 3 4 5 6 8 9 11 | | | 1 2 4 5 8 9 11 = 1: 0 1 3 4 7 8 10 = 2: 0 2 3 6 7 9 11 = 4: 0 1 4 5 7 9 10 = 5: 0 3 4 6 8 9 11 = 8: 0 1 3 5 6 8 9 = 9: 0 2 4 5 7 8 11 = 11: 0 2 3 5 6 9 10 |
0 1 2 3 4 5 6 8 10 11 | | | 1 4 6 8 10 11 = 1: 0 3 5 7 9 10 = 4: 0 2 4 6 7 9 = 6: 0 2 4 5 7 10 = 8: 0 2 3 5 8 10 = 10: 0 1 3 6 8 10 = 11: 0 2 5 7 9 11 |
0 1 2 3 4 5 6 9 10 11 | | | 2 5 6 9 10 11 = 2: 0 3 4 7 8 9 = 5: 0 1 4 5 6 9 = 6: 0 3 4 5 8 11 = 9: 0 1 2 5 8 9 = 10: 0 1 4 7 8 11 = 11: 0 3 6 7 10 11 |
0 1 2 3 4 5 7 8 9 10 = mixophrygian | | | 0 1 3 5 8 9 10 = 0: 0 1 3 5 8 9 10 = 1: 0 2 4 7 8 9 11 = 3: 0 2 5 6 7 9 10 = 5: 0 3 4 5 7 8 10 = 8: 0 1 2 4 5 7 9 = 9: 0 1 3 4 6 8 11 = 10: 0 2 3 5 7 10 11 |
0 1 2 3 4 5 7 8 9 11 = 014589 & mel. min. | | | 0 1 4 5 7 8 9 = 0: 0 1 4 5 7 8 9 = 1: 0 3 4 6 7 8 11 = 4: 0 1 3 4 5 8 9 = 5: 0 2 3 4 7 8 11 = 7: 0 1 2 5 6 9 10 = 8: 0 1 4 5 8 9 11 = 9: 0 3 4 7 8 10 11 |
0 1 2 3 4 5 7 8 10 11 | | | 0 1 3 4 7 8 10 = 0: 0 1 3 4 7 8 10 = 1: 0 2 3 6 7 9 11 = 3: 0 1 4 5 7 9 10 = 4: 0 3 4 6 8 9 11 = 7: 0 1 3 5 6 8 9 = 8: 0 2 4 5 7 8 11 = 10: 0 2 3 5 6 9 10 |
0 1 2 3 4 5 7 9 10 11 | | | 0 3 5 7 9 10 = 0: 0 3 5 7 9 10 = 3: 0 2 4 6 7 9 = 5: 0 2 4 5 7 10 = 7: 0 2 3 5 8 10 = 9: 0 1 3 6 8 10 = 10: 0 2 5 7 9 11 |
0 1 2 3 4 5 8 9 10 11 | | | 1 4 5 8 9 10 = 1: 0 3 4 7 8 9 = 4: 0 1 4 5 6 9 = 5: 0 3 4 5 8 11 = 8: 0 1 2 5 8 9 = 9: 0 1 4 7 8 11 = 10: 0 3 6 7 10 11 |
0 1 2 3 4 6 7 8 9 10 | | | 0 2 3 6 8 9 = 0: 0 2 3 6 8 9 = 2: 0 1 4 6 7 10 = 3: 0 3 5 6 9 11 = 6: 0 2 3 6 8 9 = 8: 0 1 4 6 7 10 = 9: 0 3 5 6 9 11 |
0 1 2 3 4 6 7 8 9 11 = 10 in 5ths | | | 0 2 4 7 8 9 11 = 0: 0 2 4 7 8 9 11 = 2: 0 2 5 6 7 9 10 = 4: 0 3 4 5 7 8 10 = 7: 0 1 2 4 5 7 9 = 8: 0 1 3 4 6 8 11 = 9: 0 2 3 5 7 10 11 = 11: 0 1 3 5 8 9 10 |
0 1 2 3 4 6 7 8 10 11 | | | 0 3 4 6 7 8 11 = 0: 0 3 4 6 7 8 11 = 3: 0 1 3 4 5 8 9 = 4: 0 2 3 4 7 8 11 = 6: 0 1 2 5 6 9 10 = 7: 0 1 4 5 8 9 11 = 8: 0 3 4 7 8 10 11 = 11: 0 1 4 5 7 8 9 |
0 1 2 3 4 6 7 9 10 11 = auxdim. scale & lydian | | | 0 2 3 6 7 9 11 = 0: 0 2 3 6 7 9 11 = 2: 0 1 4 5 7 9 10 = 3: 0 3 4 6 8 9 11 = 6: 0 1 3 5 6 8 9 = 7: 0 2 4 5 7 8 11 = 9: 0 2 3 5 6 9 10 = 11: 0 1 3 4 7 8 10 |
0 1 2 3 4 6 8 9 10 11 | | | 2 4 6 8 9 11 = 2: 0 2 4 6 7 9 = 4: 0 2 4 5 7 10 = 6: 0 2 3 5 8 10 = 8: 0 1 3 6 8 10 = 9: 0 2 5 7 9 11 = 11: 0 3 5 7 9 10 |
Scale Degrees: 1223356667 | ||
0 1 2 3 4 7 8 9 10 11 | | | 0 3 4 7 8 9 = 0: 0 3 4 7 8 9 = 3: 0 1 4 5 6 9 = 4: 0 3 4 5 8 11 = 7: 0 1 2 5 8 9 = 8: 0 1 4 7 8 11 = 9: 0 3 6 7 10 11 |
diamorphic with supplementary 2nd, 4th, 6th (Scale Degrees: 1223445667) | ||
0 1 2 3 5 6 7 8 9 10 = locridorian | | | 1 2 3 5 6 8 10 = 1: 0 1 2 4 5 7 9 = 2: 0 1 3 4 6 8 11 = 3: 0 2 3 5 7 10 11 = 5: 0 1 3 5 8 9 10 = 6: 0 2 4 7 8 9 11 = 8: 0 2 5 6 7 9 10 = 10: 0 3 4 5 7 8 10 |
0 1 2 3 5 6 7 8 9 11 | | | 1 2 5 7 8 11 = 1: 0 1 4 6 7 10 = 2: 0 3 5 6 9 11 = 5: 0 2 3 6 8 9 = 7: 0 1 4 6 7 10 = 8: 0 3 5 6 9 11 = 11: 0 2 3 6 8 9 |
0 1 2 3 5 6 7 8 10 11 = locrian & harm. min. | | | 1 3 6 7 8 10 11 = 1: 0 2 5 6 7 9 10 = 3: 0 3 4 5 7 8 10 = 6: 0 1 2 4 5 7 9 = 7: 0 1 3 4 6 8 11 = 8: 0 2 3 5 7 10 11 = 10: 0 1 3 5 8 9 10 = 11: 0 2 4 7 8 9 11 |
0 1 2 3 5 6 7 9 10 11 = 12569A & mel. min. | | | 2 3 5 6 7 10 11 = 2: 0 1 3 4 5 8 9 = 3: 0 2 3 4 7 8 11 = 5: 0 1 2 5 6 9 10 = 6: 0 1 4 5 8 9 11 = 7: 0 3 4 7 8 10 11 = 10: 0 1 4 5 7 8 9 = 11: 0 3 4 6 7 8 11 |
0 1 2 3 5 6 8 9 10 11 = dim. scale & locrian | | | 1 2 5 6 8 10 11 = 1: 0 1 4 5 7 9 10 = 2: 0 3 4 6 8 9 11 = 5: 0 1 3 5 6 8 9 = 6: 0 2 4 5 7 8 11 = 8: 0 2 3 5 6 9 10 = 10: 0 1 3 4 7 8 10 = 11: 0 2 3 6 7 9 11 |
0 1 2 4 5 6 7 8 9 10 | | | 0 1 2 5 6 9 10 = 0: 0 1 2 5 6 9 10 = 1: 0 1 4 5 8 9 11 = 2: 0 3 4 7 8 10 11 = 5: 0 1 4 5 7 8 9 = 6: 0 3 4 6 7 8 11 = 9: 0 1 3 4 5 8 9 = 10: 0 2 3 4 7 8 11 |
0 1 2 4 5 6 7 8 9 11 | | | 0 1 2 4 5 7 9 = 0: 0 1 2 4 5 7 9 = 1: 0 1 3 4 6 8 11 = 2: 0 2 3 5 7 10 11 = 4: 0 1 3 5 8 9 10 = 5: 0 2 4 7 8 9 11 = 7: 0 2 5 6 7 9 10 = 9: 0 3 4 5 7 8 10 |
0 1 2 4 5 6 7 8 10 11 | | | 0 1 4 6 7 10 = 0: 0 1 4 6 7 10 = 1: 0 3 5 6 9 11 = 4: 0 2 3 6 8 9 = 6: 0 1 4 6 7 10 = 7: 0 3 5 6 9 11 = 10: 0 2 3 6 8 9 |
0 1 2 4 5 6 7 9 10 11 = 12569A & bebop maj. | | | 0 2 5 6 7 9 10 = 0: 0 2 5 6 7 9 10 = 2: 0 3 4 5 7 8 10 = 5: 0 1 2 4 5 7 9 = 6: 0 1 3 4 6 8 11 = 7: 0 2 3 5 7 10 11 = 9: 0 1 3 5 8 9 10 = 10: 0 2 4 7 8 9 11 |
0 1 2 4 5 6 8 9 10 11 | | | 1 2 4 5 6 9 10 = 1: 0 1 3 4 5 8 9 = 2: 0 2 3 4 7 8 11 = 4: 0 1 2 5 6 9 10 = 5: 0 1 4 5 8 9 11 = 6: 0 3 4 7 8 10 11 = 9: 0 1 4 5 7 8 9 = 10: 0 3 4 6 7 8 11 |
0 1 3 4 5 6 7 8 9 10 = auxdim. scale & phrygian, 014589 & auxdim. scale | | | 0 1 3 5 6 8 9 = 0: 0 1 3 5 6 8 9 = 1: 0 2 4 5 7 8 11 = 3: 0 2 3 5 6 9 10 = 5: 0 1 3 4 7 8 10 = 6: 0 2 3 6 7 9 11 = 8: 0 1 4 5 7 9 10 = 9: 0 3 4 6 8 9 11 |
0 1 3 4 5 6 7 8 9 11 | | | 0 1 4 5 8 9 11 = 0: 0 1 4 5 8 9 11 = 1: 0 3 4 7 8 10 11 = 4: 0 1 4 5 7 8 9 = 5: 0 3 4 6 7 8 11 = 8: 0 1 3 4 5 8 9 = 9: 0 2 3 4 7 8 11 = 11: 0 1 2 5 6 9 10 |
0 1 3 4 5 6 7 8 10 11 = locrian & aug. scale | | | 0 1 3 4 6 8 11 = 0: 0 1 3 4 6 8 11 = 1: 0 2 3 5 7 10 11 = 3: 0 1 3 5 8 9 10 = 4: 0 2 4 7 8 9 11 = 6: 0 2 5 6 7 9 10 = 8: 0 3 4 5 7 8 10 = 11: 0 1 2 4 5 7 9 |
0 1 3 4 5 6 7 9 10 11 | | | 0 3 5 6 9 11 = 0: 0 3 5 6 9 11 = 3: 0 2 3 6 8 9 = 5: 0 1 4 6 7 10 = 6: 0 3 5 6 9 11 = 9: 0 2 3 6 8 9 = 11: 0 1 4 6 7 10 |
0 2 3 4 5 6 7 8 9 10 | | | 0 2 3 5 8 10 = 0: 0 2 3 5 8 10 = 2: 0 1 3 6 8 10 = 3: 0 2 5 7 9 11 = 5: 0 3 5 7 9 10 = 8: 0 2 4 6 7 9 = 10: 0 2 4 5 7 10 |
0 2 3 4 5 6 7 8 9 11 = lydian & harm. min. | | | 0 2 4 5 7 8 11 = 0: 0 2 4 5 7 8 11 = 2: 0 2 3 5 6 9 10 = 4: 0 1 3 4 7 8 10 = 5: 0 2 3 6 7 9 11 = 7: 0 1 4 5 7 9 10 = 8: 0 3 4 6 8 9 11 = 11: 0 1 3 5 6 8 9 |
0 2 3 4 5 6 7 8 10 11 | | | 0 3 4 7 8 10 11 = 0: 0 3 4 7 8 10 11 = 3: 0 1 4 5 7 8 9 = 4: 0 3 4 6 7 8 11 = 7: 0 1 3 4 5 8 9 = 8: 0 2 3 4 7 8 11 = 10: 0 1 2 5 6 9 10 = 11: 0 1 4 5 8 9 11 |
0 2 3 4 5 6 7 9 10 11 = dorelydian, 2367AB & bebop maj. | | | 0 2 3 5 7 10 11 = 0: 0 2 3 5 7 10 11 = 2: 0 1 3 5 8 9 10 = 3: 0 2 4 7 8 9 11 = 5: 0 2 5 6 7 9 10 = 7: 0 3 4 5 7 8 10 = 10: 0 1 2 4 5 7 9 = 11: 0 1 3 4 6 8 11 |
0 2 3 4 5 6 8 9 10 11 | | | 2 4 5 8 10 11 = 2: 0 2 3 6 8 9 = 4: 0 1 4 6 7 10 = 5: 0 3 5 6 9 11 = 8: 0 2 3 6 8 9 = 10: 0 1 4 6 7 10 = 11: 0 3 5 6 9 11 |
diamorphic with supplementary 2nd, 6th, 7th (Scale Degrees: 1223456677) | ||
0 1 2 3 5 7 8 9 10 11 = phrygian & mel. min. | | | 1 3 5 7 8 10 = 1: 0 2 4 6 7 9 = 3: 0 2 4 5 7 10 = 5: 0 2 3 5 8 10 = 7: 0 1 3 6 8 10 = 8: 0 2 5 7 9 11 = 10: 0 3 5 7 9 10 |
0 1 2 3 6 7 8 9 10 11 | | | 2 3 6 7 8 11 = 2: 0 1 4 5 6 9 = 3: 0 3 4 5 8 11 = 6: 0 1 2 5 8 9 = 7: 0 1 4 7 8 11 = 8: 0 3 6 7 10 11 = 11: 0 3 4 7 8 9 |
0 1 2 4 5 7 8 9 10 11 = 014589 & bebop maj., Span. Gypsy & ionian | | | 0 1 4 5 7 9 10 = 0: 0 1 4 5 7 9 10 = 1: 0 3 4 6 8 9 11 = 4: 0 1 3 5 6 8 9 = 5: 0 2 4 5 7 8 11 = 7: 0 2 3 5 6 9 10 = 9: 0 1 3 4 7 8 10 = 10: 0 2 3 6 7 9 11 |
0 1 2 4 6 7 8 9 10 11 | | | 0 2 4 6 7 9 = 0: 0 2 4 6 7 9 = 2: 0 2 4 5 7 10 = 4: 0 2 3 5 8 10 = 6: 0 1 3 6 8 10 = 7: 0 2 5 7 9 11 = 9: 0 3 5 7 9 10 |
0 1 3 4 5 6 8 9 10 11 = 10 in 4ths | | | 1 4 5 6 8 9 11 = 1: 0 3 4 5 7 8 10 = 4: 0 1 2 4 5 7 9 = 5: 0 1 3 4 6 8 11 = 6: 0 2 3 5 7 10 11 = 8: 0 1 3 5 8 9 10 = 9: 0 2 4 7 8 9 11 = 11: 0 2 5 6 7 9 10 |
0 1 3 4 5 7 8 9 10 11 | | | 0 1 3 4 5 8 9 = 0: 0 1 3 4 5 8 9 = 1: 0 2 3 4 7 8 11 = 3: 0 1 2 5 6 9 10 = 4: 0 1 4 5 8 9 11 = 5: 0 3 4 7 8 10 11 = 8: 0 1 4 5 7 8 9 = 9: 0 3 4 6 7 8 11 |
0 1 3 4 6 7 8 9 10 11 = 03478B & auxdim. scale | | | 0 3 4 6 8 9 11 = 0: 0 3 4 6 8 9 11 = 3: 0 1 3 5 6 8 9 = 4: 0 2 4 5 7 8 11 = 6: 0 2 3 5 6 9 10 = 8: 0 1 3 4 7 8 10 = 9: 0 2 3 6 7 9 11 = 11: 0 1 4 5 7 9 10 |
0 2 3 4 5 7 8 9 10 11 = ioaeolean, mixolydian & harm. min. | | | 0 3 4 5 7 8 10 = 0: 0 3 4 5 7 8 10 = 3: 0 1 2 4 5 7 9 = 4: 0 1 3 4 6 8 11 = 5: 0 2 3 5 7 10 11 = 7: 0 1 3 5 8 9 10 = 8: 0 2 4 7 8 9 11 = 10: 0 2 5 6 7 9 10 |
0 2 3 4 6 7 8 9 10 11 | | | 0 2 3 4 7 8 11 = 0: 0 2 3 4 7 8 11 = 2: 0 1 2 5 6 9 10 = 3: 0 1 4 5 8 9 11 = 4: 0 3 4 7 8 10 11 = 7: 0 1 4 5 7 8 9 = 8: 0 3 4 6 7 8 11 = 11: 0 1 3 4 5 8 9 |
Scale Degrees: 1224456677 | ||
0 1 2 5 6 7 8 9 10 11 | | | 1 2 5 6 7 10 = 1: 0 1 4 5 6 9 = 2: 0 3 4 5 8 11 = 5: 0 1 2 5 8 9 = 6: 0 1 4 7 8 11 = 7: 0 3 6 7 10 11 = 10: 0 3 4 7 8 9 |
diamorphic with supplementary 4th, 6th, 7th (Scale Degrees: 1234456677) | ||
0 1 3 5 6 7 8 9 10 11 | | | 1 3 5 6 8 11 = 1: 0 2 4 5 7 10 = 3: 0 2 3 5 8 10 = 5: 0 1 3 6 8 10 = 6: 0 2 5 7 9 11 = 8: 0 3 5 7 9 10 = 11: 0 2 4 6 7 9 |
0 1 4 5 6 7 8 9 10 11 | | | 0 1 4 5 6 9 = 0: 0 1 4 5 6 9 = 1: 0 3 4 5 8 11 = 4: 0 1 2 5 8 9 = 5: 0 1 4 7 8 11 = 6: 0 3 6 7 10 11 = 9: 0 3 4 7 8 9 |
0 2 3 5 6 7 8 9 10 11 = dim. scale & dorian | | | 2 3 5 7 8 10 11 = 2: 0 1 3 5 6 8 9 = 3: 0 2 4 5 7 8 11 = 5: 0 2 3 5 6 9 10 = 7: 0 1 3 4 7 8 10 = 8: 0 2 3 6 7 9 11 = 10: 0 1 4 5 7 9 10 = 11: 0 3 4 6 8 9 11 |
0 2 4 5 6 7 8 9 10 11 = whole tone & ionian | | | 0 2 4 5 7 10 = 0: 0 2 4 5 7 10 = 2: 0 2 3 5 8 10 = 4: 0 1 3 6 8 10 = 5: 0 2 5 7 9 11 = 7: 0 3 5 7 9 10 = 10: 0 2 4 6 7 9 |
0 3 4 5 6 7 8 9 10 11 | | | 0 3 4 5 8 11 = 0: 0 3 4 5 8 11 = 3: 0 1 2 5 8 9 = 4: 0 1 4 7 8 11 = 5: 0 3 6 7 10 11 = 8: 0 3 4 7 8 9 = 11: 0 1 4 5 6 9 |
chromatic unidecachord = diamorphic with supplementary 2nd, 3rd, 4th, 6th (Scale Degrees: 12233445667) | ||
0 1 2 3 4 5 6 7 8 9 10 = mixolocrian, 1st 11 chromatics | | | 0 1 2 3 5 6 8 9 10 = 0: 0 1 2 3 5 6 8 9 10 = 1: 0 1 2 4 5 7 8 9 11 = 2: 0 1 3 4 6 7 8 10 11 = 3: 0 2 3 5 6 7 9 10 11 = 5: 0 1 3 4 5 7 8 9 10 = 6: 0 2 3 4 6 7 8 9 11 = 8: 0 1 2 4 5 6 7 9 10 = 9: 0 1 3 4 5 6 8 9 11 = 10: 0 2 3 4 5 7 8 10 11 |
0 1 2 3 4 5 6 7 8 9 11 | | | 0 1 2 4 5 7 8 9 11 = 0: 0 1 2 4 5 7 8 9 11 = 1: 0 1 3 4 6 7 8 10 11 = 2: 0 2 3 5 6 7 9 10 11 = 4: 0 1 3 4 5 7 8 9 10 = 5: 0 2 3 4 6 7 8 9 11 = 7: 0 1 2 4 5 6 7 9 10 = 8: 0 1 3 4 5 6 8 9 11 = 9: 0 2 3 4 5 7 8 10 11 = 11: 0 1 2 3 5 6 8 9 10 |
0 1 2 3 4 5 6 7 8 10 11 | | | 0 1 3 4 6 7 8 10 11 = 0: 0 1 3 4 6 7 8 10 11 = 1: 0 2 3 5 6 7 9 10 11 = 3: 0 1 3 4 5 7 8 9 10 = 4: 0 2 3 4 6 7 8 9 11 = 6: 0 1 2 4 5 6 7 9 10 = 7: 0 1 3 4 5 6 8 9 11 = 8: 0 2 3 4 5 7 8 10 11 = 10: 0 1 2 3 5 6 8 9 10 = 11: 0 1 2 4 5 7 8 9 11 |
0 1 2 3 4 5 6 7 9 10 11 = auxdim. scale & ionian | | | 0 2 3 5 6 7 9 10 11 = 0: 0 2 3 5 6 7 9 10 11 = 2: 0 1 3 4 5 7 8 9 10 = 3: 0 2 3 4 6 7 8 9 11 = 5: 0 1 2 4 5 6 7 9 10 = 6: 0 1 3 4 5 6 8 9 11 = 7: 0 2 3 4 5 7 8 10 11 = 9: 0 1 2 3 5 6 8 9 10 = 10: 0 1 2 4 5 7 8 9 11 = 11: 0 1 3 4 6 7 8 10 11 |
diamorphic with supplementary 2nd, 3rd, 6th, 7th (Scale Degrees: 12233456677) | ||
0 1 2 3 4 5 6 8 9 10 11 = 11 in 4ths | | | 1 2 4 5 6 8 9 10 11 = 1: 0 1 3 4 5 7 8 9 10 = 2: 0 2 3 4 6 7 8 9 11 = 4: 0 1 2 4 5 6 7 9 10 = 5: 0 1 3 4 5 6 8 9 11 = 6: 0 2 3 4 5 7 8 10 11 = 8: 0 1 2 3 5 6 8 9 10 = 9: 0 1 2 4 5 7 8 9 11 = 10: 0 1 3 4 6 7 8 10 11 = 11: 0 2 3 5 6 7 9 10 11 |
0 1 2 3 4 5 7 8 9 10 11 = iophrygian, Spanish Gypsy & dorian, consonant-11 | | | 0 1 3 4 5 7 8 9 10 = 0: 0 1 3 4 5 7 8 9 10 = 1: 0 2 3 4 6 7 8 9 11 = 3: 0 1 2 4 5 6 7 9 10 = 4: 0 1 3 4 5 6 8 9 11 = 5: 0 2 3 4 5 7 8 10 11 = 7: 0 1 2 3 5 6 8 9 10 = 8: 0 1 2 4 5 7 8 9 11 = 9: 0 1 3 4 6 7 8 10 11 = 10: 0 2 3 5 6 7 9 10 11 |
0 1 2 3 4 6 7 8 9 10 11 = 11 in 5ths, most stable 11 chord type | | | 0 2 3 4 6 7 8 9 11 = 0: 0 2 3 4 6 7 8 9 11 = 2: 0 1 2 4 5 6 7 9 10 = 3: 0 1 3 4 5 6 8 9 11 = 4: 0 2 3 4 5 7 8 10 11 = 6: 0 1 2 3 5 6 8 9 10 = 7: 0 1 2 4 5 7 8 9 11 = 8: 0 1 3 4 6 7 8 10 11 = 9: 0 2 3 5 6 7 9 10 11 = 11: 0 1 3 4 5 7 8 9 10 |
diamorphic with supplementary 2nd, 4th, 6th, 7th (Scale Degrees: 12234456677) | ||
0 1 2 3 5 6 7 8 9 10 11 = locrian & mel. min., dim. & phrygian | | | 1 2 3 5 6 7 8 10 11 = 1: 0 1 2 4 5 6 7 9 10 = 2: 0 1 3 4 5 6 8 9 11 = 3: 0 2 3 4 5 7 8 10 11 = 5: 0 1 2 3 5 6 8 9 10 = 6: 0 1 2 4 5 7 8 9 11 = 7: 0 1 3 4 6 7 8 10 11 = 8: 0 2 3 5 6 7 9 10 11 = 10: 0 1 3 4 5 7 8 9 10 = 11: 0 2 3 4 6 7 8 9 11 |
0 1 2 4 5 6 7 8 9 10 11 = Northern lights chord | | | 0 1 2 4 5 6 7 9 10 = 0: 0 1 2 4 5 6 7 9 10 = 1: 0 1 3 4 5 6 8 9 11 = 2: 0 2 3 4 5 7 8 10 11 = 4: 0 1 2 3 5 6 8 9 10 = 5: 0 1 2 4 5 7 8 9 11 = 6: 0 1 3 4 6 7 8 10 11 = 7: 0 2 3 5 6 7 9 10 11 = 9: 0 1 3 4 5 7 8 9 10 = 10: 0 2 3 4 6 7 8 9 11 |
0 1 3 4 5 6 7 8 9 10 11 | | | 0 1 3 4 5 6 8 9 11 = 0: 0 1 3 4 5 6 8 9 11 = 1: 0 2 3 4 5 7 8 10 11 = 3: 0 1 2 3 5 6 8 9 10 = 4: 0 1 2 4 5 7 8 9 11 = 5: 0 1 3 4 6 7 8 10 11 = 6: 0 2 3 5 6 7 9 10 11 = 8: 0 1 3 4 5 7 8 9 10 = 9: 0 2 3 4 6 7 8 9 11 = 11: 0 1 2 4 5 6 7 9 10 |
0 2 3 4 5 6 7 8 9 10 11 = aeolydian, whole tone & dorian | | | 0 2 3 4 5 7 8 10 11 = 0: 0 2 3 4 5 7 8 10 11 = 2: 0 1 2 3 5 6 8 9 10 = 3: 0 1 2 4 5 7 8 9 11 = 4: 0 1 3 4 6 7 8 10 11 = 5: 0 2 3 5 6 7 9 10 11 = 7: 0 1 3 4 5 7 8 9 10 = 8: 0 2 3 4 6 7 8 9 11 = 10: 0 1 2 4 5 6 7 9 10 = 11: 0 1 3 4 5 6 8 9 11 |
chromatic Scale = diamorphic with supplementary 2nd, 3rd, 4th, 6th, 7th (Scale Degrees: 122334456677) | ||
0 1 2 3 4 5 6 7 8 9 10 11 = chromatic, dodecachord, 12 in 4ths, 12 in 5ths | | | 0 1 2 3 4 5 6 7 8 9 10 11 = 0: 0 1 2 3 4 5 6 7 8 9 10 11 = 1: 0 1 2 3 4 5 6 7 8 9 10 11 = 2: 0 1 2 3 4 5 6 7 8 9 10 11 = 3: 0 1 2 3 4 5 6 7 8 9 10 11 = 4: 0 1 2 3 4 5 6 7 8 9 10 11 = 5: 0 1 2 3 4 5 6 7 8 9 10 11 = 6: 0 1 2 3 4 5 6 7 8 9 10 11 = 7: 0 1 2 3 4 5 6 7 8 9 10 11 = 8: 0 1 2 3 4 5 6 7 8 9 10 11 = 9: 0 1 2 3 4 5 6 7 8 9 10 11 = 10: 0 1 2 3 4 5 6 7 8 9 10 11 = 11: 0 1 2 3 4 5 6 7 8 9 10 11 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 5 7 8 | 0 4 7 | 1 8 | 1:0 7 | 0 1 3 5 8 | 1:0 2 4 7 11 | 7 | 8 | 105 |
0 1 2 3 5 7 8 | 0 4 7 | 1 8 | 1:0 7 | 0 1 3 5 8 | 1:0 2 4 7 11 | 2 7 | 8 | 105 |
0 1 3 5 6 7 8 | 0 4 7 | 1 8 | 1:0 7 | 0 1 3 5 8 | 1:0 2 4 7 11 | 6 7 | 8 | 105 |
0 1 3 5 7 8 11 | 0 4 7 | 1 8 | 1:0 7 | 0 1 3 5 8 | 1:0 2 4 7 11 | 7 11 | 8 | 105 |
0 1 3 5 8 10 11 | 0 4 7 | 1 8 | 1:0 7 | 0 1 3 5 8 | 1:0 2 4 7 11 | 10 11 | 8 | 105 |
0 4 5 7 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | '' | 0 | 105 |
0 2 4 5 7 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 2 | 0 | 105 |
0 3 4 5 7 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 3 | 0 | 105 |
0 4 5 6 7 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 6 | 0 | 105 |
0 4 5 7 8 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 8 | 0 | 105 |
0 4 5 7 9 10 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 10 | 0 | 105 |
0 4 5 7 9 11 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 11 | 0 | 105 |
0 2 3 4 5 7 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 2 3 | 0 | 105 |
0 3 4 5 6 7 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 3 6 | 0 | 105 |
0 2 4 5 7 8 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 2 8 | 0 | 105 |
0 3 4 5 7 9 11 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 3 11 | 0 | 105 |
0 4 5 6 7 8 9 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 6 8 | 0 | 105 |
0 4 5 6 7 9 10 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 6 10 | 0 | 105 |
0 4 5 6 7 9 11 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 6 11 | 0 | 105 |
0 4 5 7 8 9 10 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 8 10 | 0 | 105 |
0 4 5 7 9 10 11 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 10 11 | 0 | 105 |
0 4 5 6 7 8 9 10 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 6 8 10 | 0 | 105 |
0 4 5 6 7 9 10 11 | 0 4 7 | 0 5 | 5:0 7 | 0 4 5 7 9 | 5:0 2 4 7 11 | 6 10 11 | 0 | 105 |
0 2 3 5 7 10 | 0 4 7 | 3 10 | 3:0 7 | 2 3 5 7 10 | 3:0 2 4 7 11 | 0 | 10 | 105 |
0 1 2 3 5 7 10 | 0 4 7 | 3 10 | 3:0 7 | 2 3 5 7 10 | 3:0 2 4 7 11 | 0 1 | 10 | 105 |
0 2 3 5 6 7 10 | 0 4 7 | 3 10 | 3:0 7 | 2 3 5 7 10 | 3:0 2 4 7 11 | 0 6 | 10 | 105 |
0 1 4 5 6 8 10 | 0 4 7 | 1 6 | 6:0 7 | 1 5 6 8 10 | 6:0 2 4 7 11 | 0 4 | 1 | 105 |
0 1 5 6 7 8 10 | 0 4 7 | 1 6 | 6:0 7 | 1 5 6 8 10 | 6:0 2 4 7 11 | 0 7 | 1 | 105 |
0 3 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | '' | 3 | 105 |
0 1 3 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 1 | 3 | 105 |
0 2 3 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 2 | 3 | 105 |
0 3 5 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 5 | 3 | 105 |
0 3 6 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 6 | 3 | 105 |
0 3 7 8 9 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 9 | 3 | 105 |
0 3 7 8 10 11 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 11 | 3 | 105 |
0 1 2 3 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 1 2 | 3 | 105 |
0 2 3 6 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 2 6 | 3 | 105 |
0 1 3 7 8 9 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 1 9 | 3 | 105 |
0 1 3 7 8 10 11 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 1 11 | 3 | 105 |
0 2 3 7 8 9 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 2 9 | 3 | 105 |
0 3 5 6 7 8 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 5 6 | 3 | 105 |
0 3 5 7 8 10 11 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 5 11 | 3 | 105 |
0 3 6 7 8 9 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 6 9 | 3 | 105 |
0 3 7 8 9 10 11 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 9 11 | 3 | 105 |
0 1 2 3 7 8 9 10 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 1 2 9 | 3 | 105 |
0 1 3 7 8 9 10 11 | 0 4 7 | 3 8 | 8:0 7 | 0 3 7 8 10 | 8:0 2 4 7 11 | 1 9 11 | 3 | 105 |
0 2 5 7 9 10 | 0 4 7 | 5 10 | 10:0 7 | 0 2 5 9 10 | 10:0 2 4 7 11 | 7 | 5 | 105 |
0 1 2 3 5 9 10 | 0 4 7 | 5 10 | 10:0 7 | 0 2 5 9 10 | 10:0 2 4 7 11 | 1 3 | 5 | 105 |
0 2 3 4 5 9 10 | 0 4 7 | 5 10 | 10:0 7 | 0 2 5 9 10 | 10:0 2 4 7 11 | 3 4 | 5 | 105 |
0 1 2 5 7 9 10 | 0 4 7 | 5 10 | 10:0 7 | 0 2 5 9 10 | 10:0 2 4 7 11 | 1 7 | 5 | 105 |
0 2 4 5 8 9 10 | 0 4 7 | 5 10 | 10:0 7 | 0 2 5 9 10 | 10:0 2 4 7 11 | 4 8 | 5 | 105 |
0 2 3 5 9 10 11 | 0 4 7 | 5 10 | 10:0 7 | 0 2 5 9 10 | 10:0 2 4 7 11 | 3 11 | 5 | 105 |
0 2 5 7 8 9 10 | 0 4 7 | 5 10 | 10:0 7 | 0 2 5 9 10 | 10:0 2 4 7 11 | 7 8 | 5 | 105 |
0 2 4 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | '' | 7 | 105 |
0 1 2 4 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 1 | 7 | 105 |
0 2 3 4 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 3 | 7 | 105 |
0 2 4 5 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 5 | 7 | 105 |
0 2 4 6 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 6 | 7 | 105 |
0 2 4 7 9 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 9 | 7 | 105 |
0 2 4 7 10 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 10 | 7 | 105 |
0 1 2 3 4 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 1 3 | 7 | 105 |
0 1 2 4 5 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 1 5 | 7 | 105 |
0 1 2 4 6 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 1 6 | 7 | 105 |
0 2 3 4 5 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 3 5 | 7 | 105 |
0 1 2 4 7 10 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 1 10 | 7 | 105 |
0 2 3 4 7 9 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 3 9 | 7 | 105 |
0 2 4 5 6 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 5 6 | 7 | 105 |
0 2 4 6 7 10 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 6 10 | 7 | 105 |
0 2 4 7 9 10 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 9 10 | 7 | 105 |
0 1 2 3 4 5 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 1 3 5 | 7 | 105 |
0 1 2 4 5 6 7 11 | 0 4 7 | 0 7 | 0:0 7 | 0 2 4 7 11 | 0:0 2 4 7 11 | 1 5 6 | 7 | 105 |
0 2 6 7 9 11 | 0 4 7 | 2 7 | 7:0 7 | 2 6 7 9 11 | 7:0 2 4 7 11 | 0 | 2 | 105 |
0 1 2 6 7 9 11 | 0 4 7 | 2 7 | 7:0 7 | 2 6 7 9 11 | 7:0 2 4 7 11 | 0 1 | 2 | 105 |
0 2 6 7 8 9 11 | 0 4 7 | 2 7 | 7:0 7 | 2 6 7 9 11 | 7:0 2 4 7 11 | 0 8 | 2 | 105 |
0 2 6 7 9 10 11 | 0 4 7 | 2 7 | 7:0 7 | 2 6 7 9 11 | 7:0 2 4 7 11 | 0 10 | 2 | 105 |
0 2 6 7 8 9 10 11 | 0 4 7 | 2 7 | 7:0 7 | 2 6 7 9 11 | 7:0 2 4 7 11 | 0 8 10 | 2 | 105 |
0 1 4 6 8 9 11 | 0 4 7 | 4 9 | 9:0 7 | 1 4 8 9 11 | 9:0 2 4 7 11 | 0 6 | 4 | 105 |
0 1 2 3 6 10 11 | 0 4 7 | 6 11 | 11:0 7 | 1 3 6 10 11 | 11:0 2 4 7 11 | 0 2 | 6 | 105 |
0 1 3 4 6 10 11 | 0 4 7 | 6 11 | 11:0 7 | 1 3 6 10 11 | 11:0 2 4 7 11 | 0 4 | 6 | 105 |
0 1 3 5 6 10 11 | 0 4 7 | 6 11 | 11:0 7 | 1 3 6 10 11 | 11:0 2 4 7 11 | 0 5 | 6 | 105 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 3 4 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | '' | 0 | 118 |
0 1 3 4 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 1 | 0 | 118 |
0 2 3 4 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 2 | 0 | 118 |
0 3 4 5 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 5 | 0 | 118 |
0 3 4 6 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 6 | 0 | 118 |
0 3 4 7 8 9 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 9 | 0 | 118 |
0 1 2 3 4 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 1 2 | 0 | 118 |
0 1 3 4 6 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 1 6 | 0 | 118 |
0 2 3 4 5 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 2 5 | 0 | 118 |
0 2 3 4 6 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 2 6 | 0 | 118 |
0 2 3 4 7 8 9 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 2 9 | 0 | 118 |
0 3 4 5 6 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 5 6 | 0 | 118 |
0 3 4 6 7 8 9 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 6 9 | 0 | 118 |
0 1 2 3 4 6 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 1 2 6 | 0 | 118 |
0 2 3 4 5 6 7 8 | 0 4 7 | 0 8 | 8:0 4 | 0 3 4 7 8 | 0:0 3 4 7 8 | 2 5 6 | 0 | 118 |
0 1 4 5 6 9 11 | 0 4 7 | 5 9 | 5:0 4 | 0 1 4 5 9 | 9:0 3 4 7 8 | 6 11 | 9 | 118 |
0 1 3 4 5 9 10 11 | 0 4 7 | 5 9 | 5:0 4 | 0 1 4 5 9 | 9:0 3 4 7 8 | 3 10 11 | 9 | 118 |
0 1 5 7 8 9 10 | 0 4 7 | 1 5 | 1:0 4 | 0 1 5 8 9 | 5:0 3 4 7 8 | 7 10 | 5 | 118 |
0 1 5 7 8 9 11 | 0 4 7 | 1 5 | 1:0 4 | 0 1 5 8 9 | 5:0 3 4 7 8 | 7 11 | 5 | 118 |
0 1 5 7 8 9 10 11 | 0 4 7 | 1 5 | 1:0 4 | 0 1 5 8 9 | 5:0 3 4 7 8 | 7 10 11 | 5 | 118 |
0 1 2 3 5 6 10 | 0 4 7 | 6 10 | 6:0 4 | 1 2 5 6 10 | 10:0 3 4 7 8 | 0 3 | 10 | 118 |
0 1 2 3 4 5 6 10 | 0 4 7 | 6 10 | 6:0 4 | 1 2 5 6 10 | 10:0 3 4 7 8 | 0 3 4 | 10 | 118 |
0 1 2 3 6 9 10 | 0 4 7 | 2 6 | 2:0 4 | 1 2 6 9 10 | 6:0 3 4 7 8 | 0 3 | 6 | 118 |
0 1 2 6 7 9 10 | 0 4 7 | 2 6 | 2:0 4 | 1 2 6 9 10 | 6:0 3 4 7 8 | 0 7 | 6 | 118 |
0 1 2 6 7 8 9 10 | 0 4 7 | 2 6 | 2:0 4 | 1 2 6 9 10 | 6:0 3 4 7 8 | 0 7 8 | 6 | 118 |
0 2 3 6 7 11 | 0 4 7 | 7 11 | 7:0 4 | 2 3 6 7 11 | 11:0 3 4 7 8 | 0 | 11 | 118 |
0 1 2 3 6 7 11 | 0 4 7 | 7 11 | 7:0 4 | 2 3 6 7 11 | 11:0 3 4 7 8 | 0 1 | 11 | 118 |
0 2 3 5 6 7 11 | 0 4 7 | 7 11 | 7:0 4 | 2 3 6 7 11 | 11:0 3 4 7 8 | 0 5 | 11 | 118 |
0 1 2 3 5 6 7 11 | 0 4 7 | 7 11 | 7:0 4 | 2 3 6 7 11 | 11:0 3 4 7 8 | 0 1 5 | 11 | 118 |
0 3 4 8 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | '' | 8 | 118 |
0 1 3 4 8 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 1 | 8 | 118 |
0 2 3 4 8 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 2 | 8 | 118 |
0 3 4 8 9 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 9 | 8 | 118 |
0 3 4 8 10 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 10 | 8 | 118 |
0 1 2 3 4 8 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 1 2 | 8 | 118 |
0 2 3 4 8 9 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 2 9 | 8 | 118 |
0 1 3 4 8 10 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 1 10 | 8 | 118 |
0 2 3 4 8 10 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 2 10 | 8 | 118 |
0 3 4 5 8 10 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 5 10 | 8 | 118 |
0 3 4 8 9 10 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 9 10 | 8 | 118 |
0 1 2 3 4 8 10 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 1 2 10 | 8 | 118 |
0 2 3 4 8 9 10 11 | 0 4 7 | 4 8 | 4:0 4 | 0 3 4 8 11 | 8:0 3 4 7 8 | 2 9 10 | 8 | 118 |
0 4 7 8 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | '' | 4 | 118 |
0 1 4 7 8 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 1 | 4 | 118 |
0 4 5 7 8 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 5 | 4 | 118 |
0 4 6 7 8 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 6 | 4 | 118 |
0 4 7 8 9 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 9 | 4 | 118 |
0 4 7 8 10 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 10 | 4 | 118 |
0 1 4 6 7 8 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 1 6 | 4 | 118 |
0 1 4 7 8 10 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 1 10 | 4 | 118 |
0 4 5 6 7 8 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 5 6 | 4 | 118 |
0 4 5 7 8 10 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 5 10 | 4 | 118 |
0 4 6 7 8 9 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 6 9 | 4 | 118 |
0 4 6 7 8 10 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 6 10 | 4 | 118 |
0 4 7 8 9 10 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 9 10 | 4 | 118 |
0 4 5 6 7 8 10 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 5 6 10 | 4 | 118 |
0 4 6 7 8 9 10 11 | 0 4 7 | 0 4 | 0:0 4 | 0 4 7 8 11 | 4:0 3 4 7 8 | 6 9 10 | 4 | 118 |
0 2 3 7 10 11 | 0 4 7 | 3 7 | 3:0 4 | 2 3 7 10 11 | 7:0 3 4 7 8 | 0 | 7 | 118 |
0 1 2 3 7 10 11 | 0 4 7 | 3 7 | 3:0 4 | 2 3 7 10 11 | 7:0 3 4 7 8 | 0 1 | 7 | 118 |
0 2 3 7 9 10 11 | 0 4 7 | 3 7 | 3:0 4 | 2 3 7 10 11 | 7:0 3 4 7 8 | 0 9 | 7 | 118 |
0 1 2 3 7 9 10 11 | 0 4 7 | 3 7 | 3:0 4 | 2 3 7 10 11 | 7:0 3 4 7 8 | 0 1 9 | 7 | 118 |
0 3 6 7 10 11 | 0 4 7 | 3 11 | 11:0 4 | 3 6 7 10 11 | 3:0 3 4 7 8 | 0 | 3 | 118 |
0 3 5 6 7 10 11 | 0 4 7 | 3 11 | 11:0 4 | 3 6 7 10 11 | 3:0 3 4 7 8 | 0 5 | 3 | 118 |
0 3 6 7 9 10 11 | 0 4 7 | 3 11 | 11:0 4 | 3 6 7 10 11 | 3:0 3 4 7 8 | 0 9 | 3 | 118 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 4 5 6 9 | 0 4 7 | 2 5 | 2:0 3 | 0 2 5 6 9 | 2:0 3 4 7 10 | 3 4 | 9 | 125 |
0 2 3 5 6 7 9 | 0 4 7 | 2 5 | 2:0 3 | 0 2 5 6 9 | 2:0 3 4 7 10 | 3 7 | 9 | 125 |
0 2 4 5 6 9 11 | 0 4 7 | 2 5 | 2:0 3 | 0 2 5 6 9 | 2:0 3 4 7 10 | 4 11 | 9 | 125 |
0 1 2 3 5 6 7 9 | 0 4 7 | 2 5 | 2:0 3 | 0 2 5 6 9 | 2:0 3 4 7 10 | 1 3 7 | 9 | 125 |
0 1 4 7 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | '' | 4 | 125 |
0 1 2 4 7 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 2 | 4 | 125 |
0 1 3 4 7 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 3 | 4 | 125 |
0 1 4 6 7 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 6 | 4 | 125 |
0 1 4 7 8 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 8 | 4 | 125 |
0 1 4 7 9 10 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 10 | 4 | 125 |
0 1 4 7 9 11 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 11 | 4 | 125 |
0 1 2 3 4 7 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 2 3 | 4 | 125 |
0 1 3 4 6 7 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 3 6 | 4 | 125 |
0 1 2 4 7 8 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 2 8 | 4 | 125 |
0 1 2 4 7 9 10 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 2 10 | 4 | 125 |
0 1 3 4 7 9 11 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 3 11 | 4 | 125 |
0 1 4 6 7 8 9 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 6 8 | 4 | 125 |
0 1 4 6 7 9 11 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 6 11 | 4 | 125 |
0 1 4 7 8 9 10 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 8 10 | 4 | 125 |
0 1 4 7 9 10 11 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 10 11 | 4 | 125 |
0 1 2 4 7 8 9 10 | 0 4 7 | 0 9 | 9:0 3 | 0 1 4 7 9 | 9:0 3 4 7 10 | 2 8 10 | 4 | 125 |
0 3 5 7 8 9 | 0 4 7 | 5 8 | 5:0 3 | 0 3 5 8 9 | 5:0 3 4 7 10 | 7 | 0 | 125 |
0 2 3 5 7 8 9 | 0 4 7 | 5 8 | 5:0 3 | 0 3 5 8 9 | 5:0 3 4 7 10 | 2 7 | 0 | 125 |
0 2 3 5 8 9 11 | 0 4 7 | 5 8 | 5:0 3 | 0 3 5 8 9 | 5:0 3 4 7 10 | 2 11 | 0 | 125 |
0 3 4 5 8 9 10 | 0 4 7 | 5 8 | 5:0 3 | 0 3 5 8 9 | 5:0 3 4 7 10 | 4 10 | 0 | 125 |
0 3 5 6 7 8 9 | 0 4 7 | 5 8 | 5:0 3 | 0 3 5 8 9 | 5:0 3 4 7 10 | 6 7 | 0 | 125 |
0 3 5 7 8 9 11 | 0 4 7 | 5 8 | 5:0 3 | 0 3 5 8 9 | 5:0 3 4 7 10 | 7 11 | 0 | 125 |
0 3 4 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | '' | 7 | 125 |
0 1 3 4 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 1 | 7 | 125 |
0 2 3 4 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 2 | 7 | 125 |
0 3 4 5 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 5 | 7 | 125 |
0 3 4 6 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 6 | 7 | 125 |
0 3 4 7 9 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 9 | 7 | 125 |
0 3 4 7 10 11 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 11 | 7 | 125 |
0 1 2 3 4 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 1 2 | 7 | 125 |
0 1 3 4 5 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 1 5 | 7 | 125 |
0 2 3 4 6 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 2 6 | 7 | 125 |
0 1 3 4 7 10 11 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 1 11 | 7 | 125 |
0 2 3 4 7 9 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 2 9 | 7 | 125 |
0 3 4 5 6 7 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 5 6 | 7 | 125 |
0 3 4 5 7 10 11 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 5 11 | 7 | 125 |
0 3 4 6 7 9 10 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 6 9 | 7 | 125 |
0 3 4 7 9 10 11 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 9 11 | 7 | 125 |
0 1 3 4 5 7 10 11 | 0 4 7 | 0 3 | 0:0 3 | 0 3 4 7 10 | 0:0 3 4 7 10 | 1 5 11 | 7 | 125 |
0 1 3 6 7 10 | 0 4 7 | 3 6 | 3:0 3 | 1 3 6 7 10 | 3:0 3 4 7 10 | 0 | 10 | 125 |
0 1 2 3 6 7 10 | 0 4 7 | 3 6 | 3:0 3 | 1 3 6 7 10 | 3:0 3 4 7 10 | 0 2 | 10 | 125 |
0 1 3 5 6 7 10 | 0 4 7 | 3 6 | 3:0 3 | 1 3 6 7 10 | 3:0 3 4 7 10 | 0 5 | 10 | 125 |
0 1 3 6 7 9 10 | 0 4 7 | 3 6 | 3:0 3 | 1 3 6 7 10 | 3:0 3 4 7 10 | 0 9 | 10 | 125 |
0 1 2 5 7 8 10 | 0 4 7 | 1 10 | 10:0 3 | 1 2 5 8 10 | 10:0 3 4 7 10 | 0 7 | 5 | 125 |
0 1 4 6 8 9 10 | 0 4 7 | 6 9 | 6:0 3 | 1 4 6 9 10 | 6:0 3 4 7 10 | 0 8 | 1 | 125 |
0 1 4 5 6 8 11 | 0 4 7 | 1 4 | 1:0 3 | 1 4 5 8 11 | 1:0 3 4 7 10 | 0 6 | 8 | 125 |
0 1 4 5 8 10 11 | 0 4 7 | 1 4 | 1:0 3 | 1 4 5 8 11 | 1:0 3 4 7 10 | 0 10 | 8 | 125 |
0 3 6 7 8 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 7 | 3 | 125 |
0 1 3 6 7 8 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 1 7 | 3 | 125 |
0 1 3 6 8 9 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 1 9 | 3 | 125 |
0 2 3 5 6 8 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 2 5 | 3 | 125 |
0 2 3 6 8 10 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 2 10 | 3 | 125 |
0 3 5 6 7 8 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 5 7 | 3 | 125 |
0 3 6 7 8 9 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 7 9 | 3 | 125 |
0 1 3 6 7 8 9 11 | 0 4 7 | 8 11 | 8:0 3 | 0 3 6 8 11 | 8:0 3 4 7 10 | 1 7 9 | 3 | 125 |
0 2 3 6 9 10 11 | 0 4 7 | 2 11 | 11:0 3 | 2 3 6 9 11 | 11:0 3 4 7 10 | 0 10 | 6 | 125 |
0 2 3 4 6 9 10 11 | 0 4 7 | 2 11 | 11:0 3 | 2 3 6 9 11 | 11:0 3 4 7 10 | 0 4 10 | 6 | 125 |
0 2 5 7 10 11 | 0 4 7 | 7 10 | 7:0 3 | 2 5 7 10 11 | 7:0 3 4 7 10 | 0 | 2 | 125 |
0 1 2 5 7 10 11 | 0 4 7 | 7 10 | 7:0 3 | 2 5 7 10 11 | 7:0 3 4 7 10 | 0 1 | 2 | 125 |
0 2 5 6 7 10 11 | 0 4 7 | 7 10 | 7:0 3 | 2 5 7 10 11 | 7:0 3 4 7 10 | 0 6 | 2 | 125 |
0 2 5 7 8 10 11 | 0 4 7 | 7 10 | 7:0 3 | 2 5 7 10 11 | 7:0 3 4 7 10 | 0 8 | 2 | 125 |
0 2 5 6 7 8 10 11 | 0 4 7 | 7 10 | 7:0 3 | 2 5 7 10 11 | 7:0 3 4 7 10 | 0 6 8 | 2 | 125 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 4 5 7 8 | 0 4 7 | 0 1 | 1:0 11 | 0 1 4 5 7 8 | 1:0 3 4 6 7 11 | '' | '' | 197 |
0 1 2 4 5 7 8 | 0 4 7 | 0 1 | 1:0 11 | 0 1 4 5 7 8 | 1:0 3 4 6 7 11 | 2 | '' | 197 |
0 1 4 5 6 7 8 | 0 4 7 | 0 1 | 1:0 11 | 0 1 4 5 7 8 | 1:0 3 4 6 7 11 | 6 | '' | 197 |
0 1 4 5 7 8 10 | 0 4 7 | 0 1 | 1:0 11 | 0 1 4 5 7 8 | 1:0 3 4 6 7 11 | 10 | '' | 197 |
0 1 2 4 5 6 7 8 | 0 4 7 | 0 1 | 1:0 11 | 0 1 4 5 7 8 | 1:0 3 4 6 7 11 | 2 6 | '' | 197 |
0 1 3 5 6 9 10 | 0 4 7 | 5 6 | 6:0 11 | 0 1 5 6 9 10 | 6:0 3 4 6 7 11 | 3 | '' | 197 |
0 1 5 6 7 9 10 11 | 0 4 7 | 5 6 | 6:0 11 | 0 1 5 6 9 10 | 6:0 3 4 6 7 11 | 7 11 | '' | 197 |
0 2 3 6 7 9 10 | 0 4 7 | 2 3 | 3:0 11 | 2 3 6 7 9 10 | 3:0 3 4 6 7 11 | 0 | '' | 197 |
0 3 4 6 7 11 | 0 4 7 | 0 11 | 0:0 11 | 0 3 4 6 7 11 | 0:0 3 4 6 7 11 | '' | '' | 197 |
0 1 3 4 6 7 11 | 0 4 7 | 0 11 | 0:0 11 | 0 3 4 6 7 11 | 0:0 3 4 6 7 11 | 1 | '' | 197 |
0 3 4 5 6 7 11 | 0 4 7 | 0 11 | 0:0 11 | 0 3 4 6 7 11 | 0:0 3 4 6 7 11 | 5 | '' | 197 |
0 3 4 6 7 9 11 | 0 4 7 | 0 11 | 0:0 11 | 0 3 4 6 7 11 | 0:0 3 4 6 7 11 | 9 | '' | 197 |
0 1 3 4 5 6 7 11 | 0 4 7 | 0 11 | 0:0 11 | 0 3 4 6 7 11 | 0:0 3 4 6 7 11 | 1 5 | '' | 197 |
0 2 3 7 8 11 | 0 4 7 | 7 8 | 8:0 11 | 0 2 3 7 8 11 | 8:0 3 4 6 7 11 | '' | '' | 197 |
0 1 2 3 7 8 11 | 0 4 7 | 7 8 | 8:0 11 | 0 2 3 7 8 11 | 8:0 3 4 6 7 11 | 1 | '' | 197 |
0 2 3 5 7 8 11 | 0 4 7 | 7 8 | 8:0 11 | 0 2 3 7 8 11 | 8:0 3 4 6 7 11 | 5 | '' | 197 |
0 2 3 7 8 9 11 | 0 4 7 | 7 8 | 8:0 11 | 0 2 3 7 8 11 | 8:0 3 4 6 7 11 | 9 | '' | 197 |
0 1 2 3 7 8 9 11 | 0 4 7 | 7 8 | 8:0 11 | 0 2 3 7 8 11 | 8:0 3 4 6 7 11 | 1 9 | '' | 197 |
0 2 4 5 8 9 11 | 0 4 7 | 4 5 | 5:0 11 | 0 4 5 8 9 11 | 5:0 3 4 6 7 11 | 2 | '' | 197 |
0 2 3 5 6 10 11 | 0 4 7 | 10 11 | 11:0 11 | 2 3 5 6 10 11 | 11:0 3 4 6 7 11 | 0 | '' | 197 |
0 2 3 4 5 6 10 11 | 0 4 7 | 10 11 | 11:0 11 | 2 3 5 6 10 11 | 11:0 3 4 6 7 11 | 0 4 | '' | 197 |
0 1 2 6 7 10 11 | 0 4 7 | 6 7 | 7:0 11 | 1 2 6 7 10 11 | 7:0 3 4 6 7 11 | 0 | '' | 197 |
0 1 2 6 7 8 10 11 | 0 4 7 | 6 7 | 7:0 11 | 1 2 6 7 10 11 | 7:0 3 4 6 7 11 | 0 8 | '' | 197 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 4 5 7 9 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | '' | 0 4 9 | 205 |
0 1 2 4 5 7 9 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 2 | 0 4 9 | 205 |
0 1 3 4 5 7 9 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 3 | 0 4 9 | 205 |
0 1 4 5 6 7 9 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 6 | 0 4 9 | 205 |
0 1 4 5 7 9 10 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 10 | 0 4 9 | 205 |
0 1 4 5 7 9 11 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 11 | 0 4 9 | 205 |
0 1 2 3 4 5 7 9 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 2 3 | 0 4 9 | 205 |
0 1 3 4 5 6 7 9 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 3 6 | 0 4 9 | 205 |
0 1 3 4 5 7 9 11 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 3 11 | 0 4 9 | 205 |
0 1 4 5 6 7 9 11 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 6 11 | 0 4 9 | 205 |
0 1 4 5 7 9 10 11 | 0 4 7 | 0 5 9 | 5:0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 10 11 | 0 4 9 | 205 |
0 1 3 5 7 8 9 | 0 4 7 | 1 5 8 | 1:0 4 7 | 0 1 3 5 8 9 | 5:0 3 4 7 8 10 | 7 | 0 5 8 | 205 |
0 1 3 5 8 9 10 | 0 4 7 | 1 5 8 | 1:0 4 7 | 0 1 3 5 8 9 | 5:0 3 4 7 8 10 | 10 | 0 5 8 | 205 |
0 1 3 5 8 9 11 | 0 4 7 | 1 5 8 | 1:0 4 7 | 0 1 3 5 8 9 | 5:0 3 4 7 8 10 | 11 | 0 5 8 | 205 |
0 1 2 3 5 7 8 9 | 0 4 7 | 1 5 8 | 1:0 4 7 | 0 1 3 5 8 9 | 5:0 3 4 7 8 10 | 2 7 | 0 5 8 | 205 |
0 1 3 5 6 7 8 9 | 0 4 7 | 1 5 8 | 1:0 4 7 | 0 1 3 5 8 9 | 5:0 3 4 7 8 10 | 6 7 | 0 5 8 | 205 |
0 1 3 5 7 8 9 11 | 0 4 7 | 1 5 8 | 1:0 4 7 | 0 1 3 5 8 9 | 5:0 3 4 7 8 10 | 7 11 | 0 5 8 | 205 |
0 1 2 5 6 7 8 10 | 0 4 7 | 1 6 10 | 6:0 4 7 | 1 2 5 6 8 10 | 10:0 3 4 7 8 10 | 0 7 | 1 5 10 | 205 |
0 3 4 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | '' | 0 3 7 | 205 |
0 1 3 4 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 1 | 0 3 7 | 205 |
0 2 3 4 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 2 | 0 3 7 | 205 |
0 3 4 5 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 5 | 0 3 7 | 205 |
0 3 4 6 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 6 | 0 3 7 | 205 |
0 3 4 7 8 9 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 9 | 0 3 7 | 205 |
0 1 2 3 4 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 1 2 | 0 3 7 | 205 |
0 2 3 4 6 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 2 6 | 0 3 7 | 205 |
0 2 3 4 7 8 9 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 2 9 | 0 3 7 | 205 |
0 3 4 5 6 7 8 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 5 6 | 0 3 7 | 205 |
0 3 4 6 7 8 9 10 | 0 4 7 | 0 3 8 | 8:0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 6 9 | 0 3 7 | 205 |
0 2 3 5 6 9 10 | 0 4 7 | 2 5 10 | 10:0 4 7 | 0 2 5 6 9 10 | 2:0 3 4 7 8 10 | 3 | 2 5 9 | 205 |
0 2 4 5 6 9 10 | 0 4 7 | 2 5 10 | 10:0 4 7 | 0 2 5 6 9 10 | 2:0 3 4 7 8 10 | 4 | 2 5 9 | 205 |
0 2 3 4 5 6 9 10 | 0 4 7 | 2 5 10 | 10:0 4 7 | 0 2 5 6 9 10 | 2:0 3 4 7 8 10 | 3 4 | 2 5 9 | 205 |
0 2 4 5 6 9 10 11 | 0 4 7 | 2 5 10 | 10:0 4 7 | 0 2 5 6 9 10 | 2:0 3 4 7 8 10 | 4 11 | 2 5 9 | 205 |
0 2 5 6 7 8 9 10 | 0 4 7 | 2 5 10 | 10:0 4 7 | 0 2 5 6 9 10 | 2:0 3 4 7 8 10 | 7 8 | 2 5 9 | 205 |
0 3 4 5 6 8 11 | 0 4 7 | 4 8 11 | 4:0 4 7 | 0 3 4 6 8 11 | 8:0 3 4 7 8 10 | 5 | 3 8 11 | 205 |
0 3 4 6 8 9 11 | 0 4 7 | 4 8 11 | 4:0 4 7 | 0 3 4 6 8 11 | 8:0 3 4 7 8 10 | 9 | 3 8 11 | 205 |
0 3 4 6 8 10 11 | 0 4 7 | 4 8 11 | 4:0 4 7 | 0 3 4 6 8 11 | 8:0 3 4 7 8 10 | 10 | 3 8 11 | 205 |
0 2 4 7 8 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | '' | 4 7 11 | 205 |
0 1 2 4 7 8 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 1 | 4 7 11 | 205 |
0 2 4 5 7 8 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 5 | 4 7 11 | 205 |
0 2 4 6 7 8 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 6 | 4 7 11 | 205 |
0 2 4 7 8 9 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 9 | 4 7 11 | 205 |
0 2 4 7 8 10 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 10 | 4 7 11 | 205 |
0 1 2 4 6 7 8 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 1 6 | 4 7 11 | 205 |
0 1 2 4 7 8 10 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 1 10 | 4 7 11 | 205 |
0 2 4 5 6 7 8 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 5 6 | 4 7 11 | 205 |
0 2 4 6 7 8 10 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 6 10 | 4 7 11 | 205 |
0 2 4 7 8 9 10 11 | 0 4 7 | 0 4 7 | 0:0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 9 10 | 4 7 11 | 205 |
0 2 3 6 7 9 11 | 0 4 7 | 2 7 11 | 7:0 4 7 | 2 3 6 7 9 11 | 11:0 3 4 7 8 10 | 0 | 2 6 11 | 205 |
0 1 2 3 6 7 9 11 | 0 4 7 | 2 7 11 | 7:0 4 7 | 2 3 6 7 9 11 | 11:0 3 4 7 8 10 | 0 1 | 2 6 11 | 205 |
0 2 3 5 7 10 11 | 0 4 7 | 3 7 10 | 3:0 4 7 | 2 3 5 7 10 11 | 7:0 3 4 7 8 10 | 0 | 2 7 10 | 205 |
0 1 2 3 5 7 10 11 | 0 4 7 | 3 7 10 | 3:0 4 7 | 2 3 5 7 10 11 | 7:0 3 4 7 8 10 | 0 1 | 2 7 10 | 205 |
0 1 3 6 7 10 11 | 0 4 7 | 3 6 11 | 11:0 4 7 | 1 3 6 7 10 11 | 3:0 3 4 7 8 10 | 0 | 3 6 10 | 205 |
0 1 3 5 6 7 10 11 | 0 4 7 | 3 6 11 | 11:0 4 7 | 1 3 6 7 10 11 | 3:0 3 4 7 8 10 | 0 5 | 3 6 10 | 205 |
0 1 3 6 7 9 10 11 | 0 4 7 | 3 6 11 | 11:0 4 7 | 1 3 6 7 10 11 | 3:0 3 4 7 8 10 | 0 9 | 3 6 10 | 205 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 4 6 7 9 | 0 4 7 | 0 2 | 2:0 10 | 0 2 4 6 7 9 | 2:0 2 4 5 7 10 | '' | '' | 210 |
0 2 3 4 6 7 9 | 0 4 7 | 0 2 | 2:0 10 | 0 2 4 6 7 9 | 2:0 2 4 5 7 10 | 3 | '' | 210 |
0 2 4 6 7 8 9 | 0 4 7 | 0 2 | 2:0 10 | 0 2 4 6 7 9 | 2:0 2 4 5 7 10 | 8 | '' | 210 |
0 2 4 6 7 9 10 | 0 4 7 | 0 2 | 2:0 10 | 0 2 4 6 7 9 | 2:0 2 4 5 7 10 | 10 | '' | 210 |
0 2 4 6 7 8 9 10 | 0 4 7 | 0 2 | 2:0 10 | 0 2 4 6 7 9 | 2:0 2 4 5 7 10 | 8 10 | '' | 210 |
0 2 4 5 7 10 | 0 4 7 | 0 10 | 0:0 10 | 0 2 4 5 7 10 | 0:0 2 4 5 7 10 | '' | '' | 210 |
0 1 2 4 5 7 10 | 0 4 7 | 0 10 | 0:0 10 | 0 2 4 5 7 10 | 0:0 2 4 5 7 10 | 1 | '' | 210 |
0 2 4 5 6 7 10 | 0 4 7 | 0 10 | 0:0 10 | 0 2 4 5 7 10 | 0:0 2 4 5 7 10 | 6 | '' | 210 |
0 2 4 5 7 8 10 | 0 4 7 | 0 10 | 0:0 10 | 0 2 4 5 7 10 | 0:0 2 4 5 7 10 | 8 | '' | 210 |
0 2 4 5 6 7 8 10 | 0 4 7 | 0 10 | 0:0 10 | 0 2 4 5 7 10 | 0:0 2 4 5 7 10 | 6 8 | '' | 210 |
0 2 3 5 6 8 10 | 0 4 7 | 8 10 | 10:0 10 | 0 2 3 5 8 10 | 10:0 2 4 5 7 10 | 6 | '' | 210 |
0 2 3 5 8 10 11 | 0 4 7 | 8 10 | 10:0 10 | 0 2 3 5 8 10 | 10:0 2 4 5 7 10 | 11 | '' | 210 |
0 1 3 6 8 9 10 | 0 4 7 | 6 8 | 8:0 10 | 0 1 3 6 8 10 | 8:0 2 4 5 7 10 | 9 | '' | 210 |
0 1 2 3 4 6 8 10 | 0 4 7 | 6 8 | 8:0 10 | 0 1 3 6 8 10 | 8:0 2 4 5 7 10 | 2 4 | '' | 210 |
0 3 5 7 9 10 | 0 4 7 | 3 5 | 5:0 10 | 0 3 5 7 9 10 | 5:0 2 4 5 7 10 | '' | '' | 210 |
0 1 3 5 7 9 10 | 0 4 7 | 3 5 | 5:0 10 | 0 3 5 7 9 10 | 5:0 2 4 5 7 10 | 1 | '' | 210 |
0 3 5 6 7 9 10 | 0 4 7 | 3 5 | 5:0 10 | 0 3 5 7 9 10 | 5:0 2 4 5 7 10 | 6 | '' | 210 |
0 3 5 7 9 10 11 | 0 4 7 | 3 5 | 5:0 10 | 0 3 5 7 9 10 | 5:0 2 4 5 7 10 | 11 | '' | 210 |
0 1 3 5 7 9 10 11 | 0 4 7 | 3 5 | 5:0 10 | 0 3 5 7 9 10 | 5:0 2 4 5 7 10 | 1 11 | '' | 210 |
0 2 5 7 9 11 | 0 4 7 | 5 7 | 7:0 10 | 0 2 5 7 9 11 | 7:0 2 4 5 7 10 | '' | '' | 210 |
0 1 2 5 7 9 11 | 0 4 7 | 5 7 | 7:0 10 | 0 2 5 7 9 11 | 7:0 2 4 5 7 10 | 1 | '' | 210 |
0 2 3 5 7 9 11 | 0 4 7 | 5 7 | 7:0 10 | 0 2 5 7 9 11 | 7:0 2 4 5 7 10 | 3 | '' | 210 |
0 2 5 7 8 9 11 | 0 4 7 | 5 7 | 7:0 10 | 0 2 5 7 9 11 | 7:0 2 4 5 7 10 | 8 | '' | 210 |
0 1 2 3 5 7 9 11 | 0 4 7 | 5 7 | 7:0 10 | 0 2 5 7 9 11 | 7:0 2 4 5 7 10 | 1 3 | '' | 210 |
0 2 4 6 8 9 11 | 0 4 7 | 2 4 | 4:0 10 | 2 4 6 8 9 11 | 4:0 2 4 5 7 10 | 0 | '' | 210 |
0 1 4 6 8 10 11 | 0 4 7 | 4 6 | 6:0 10 | 1 4 6 8 10 11 | 6:0 2 4 5 7 10 | 0 | '' | 210 |
0 1 2 4 6 8 10 11 | 0 4 7 | 4 6 | 6:0 10 | 1 4 6 8 10 11 | 6:0 2 4 5 7 10 | 0 2 | '' | 210 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 4 5 8 9 10 | 0 4 7 | 1 5 9 | 1:0 4 8 | 0 1 4 5 8 9 | 1:0 3 4 7 8 11 | 10 | 1 5 9 | 211 |
0 3 4 7 8 11 | 0 4 7 | 0 4 8 | 0:0 4 8 | 0 3 4 7 8 11 | 0:0 3 4 7 8 11 | '' | 0 4 8 | 211 |
0 1 3 4 7 8 11 | 0 4 7 | 0 4 8 | 0:0 4 8 | 0 3 4 7 8 11 | 0:0 3 4 7 8 11 | 1 | 0 4 8 | 211 |
0 3 4 5 7 8 11 | 0 4 7 | 0 4 8 | 0:0 4 8 | 0 3 4 7 8 11 | 0:0 3 4 7 8 11 | 5 | 0 4 8 | 211 |
0 3 4 7 8 9 11 | 0 4 7 | 0 4 8 | 0:0 4 8 | 0 3 4 7 8 11 | 0:0 3 4 7 8 11 | 9 | 0 4 8 | 211 |
0 2 3 6 7 10 11 | 0 4 7 | 3 7 11 | 3:0 4 8 | 2 3 6 7 10 11 | 3:0 3 4 7 8 11 | 0 | 3 7 11 | 211 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 6 7 8 9 | 0 4 7 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 7 | '' | 213 |
0 2 3 6 8 9 10 | 0 4 7 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 10 | '' | 213 |
0 1 2 3 6 7 8 9 | 0 4 7 | 2 8 | 2:0 6 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 1 7 | '' | 213 |
0 1 4 6 7 10 | 0 4 7 | 0 6 | 0:0 6 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | '' | '' | 213 |
0 1 2 4 6 7 10 | 0 4 7 | 0 6 | 0:0 6 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | 2 | '' | 213 |
0 1 4 5 6 7 10 | 0 4 7 | 0 6 | 0:0 6 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | 5 | '' | 213 |
0 1 4 6 7 8 10 | 0 4 7 | 0 6 | 0:0 6 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | 8 | '' | 213 |
0 1 4 6 7 10 11 | 0 4 7 | 0 6 | 0:0 6 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | 11 | '' | 213 |
0 1 2 4 6 7 8 10 | 0 4 7 | 0 6 | 0:0 6 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | 2 8 | '' | 213 |
0 1 4 5 6 7 10 11 | 0 4 7 | 0 6 | 0:0 6 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | 5 11 | '' | 213 |
0 1 2 5 7 8 11 | 0 4 7 | 1 7 | 1:0 6 | 1 2 5 7 8 11 | 1:0 1 4 6 7 10 | 0 | '' | 213 |
0 1 2 5 6 7 8 11 | 0 4 7 | 1 7 | 1:0 6 | 1 2 5 7 8 11 | 1:0 1 4 6 7 10 | 0 6 | '' | 213 |
0 1 3 5 6 9 11 | 0 4 7 | 5 11 | 5:0 6 | 0 3 5 6 9 11 | 5:0 1 4 6 7 10 | 1 | '' | 213 |
0 3 4 5 6 9 11 | 0 4 7 | 5 11 | 5:0 6 | 0 3 5 6 9 11 | 5:0 1 4 6 7 10 | 4 | '' | 213 |
0 3 5 6 7 9 11 | 0 4 7 | 5 11 | 5:0 6 | 0 3 5 6 9 11 | 5:0 1 4 6 7 10 | 7 | '' | 213 |
0 1 3 5 6 7 9 11 | 0 4 7 | 5 11 | 5:0 6 | 0 3 5 6 9 11 | 5:0 1 4 6 7 10 | 1 7 | '' | 213 |
0 3 4 5 6 9 10 11 | 0 4 7 | 5 11 | 5:0 6 | 0 3 5 6 9 11 | 5:0 1 4 6 7 10 | 4 10 | '' | 213 |
0 2 4 5 8 10 11 | 0 4 7 | 4 10 | 4:0 6 | 2 4 5 8 10 11 | 4:0 1 4 6 7 10 | 0 | '' | 213 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 4 5 6 7 9 | 0 4 7 | 0 2 5 | 5:0 7 9 | 0 2 4 5 6 7 9 | 5:0 1 2 4 7 9 11 | '' | 0 9 | 239 |
0 2 3 4 5 6 7 9 | 0 4 7 | 0 2 5 | 5:0 7 9 | 0 2 4 5 6 7 9 | 5:0 1 2 4 7 9 11 | 3 | 0 9 | 239 |
0 2 3 4 5 7 10 | 0 4 7 | 0 3 10 | 3:0 7 9 | 0 2 3 4 5 7 10 | 3:0 1 2 4 7 9 11 | '' | 7 10 | 239 |
0 1 2 3 4 5 7 10 | 0 4 7 | 0 3 10 | 3:0 7 9 | 0 2 3 4 5 7 10 | 3:0 1 2 4 7 9 11 | 1 | 7 10 | 239 |
0 2 3 4 5 6 7 10 | 0 4 7 | 0 3 10 | 3:0 7 9 | 0 2 3 4 5 7 10 | 3:0 1 2 4 7 9 11 | 6 | 7 10 | 239 |
0 3 5 7 8 9 10 | 0 4 7 | 3 5 8 | 8:0 7 9 | 0 3 5 7 8 9 10 | 8:0 1 2 4 7 9 11 | '' | 0 3 | 239 |
0 3 5 6 7 8 9 10 | 0 4 7 | 3 5 8 | 8:0 7 9 | 0 3 5 7 8 9 10 | 8:0 1 2 4 7 9 11 | 6 | 0 3 | 239 |
0 3 5 7 8 9 10 11 | 0 4 7 | 3 5 8 | 8:0 7 9 | 0 3 5 7 8 9 10 | 8:0 1 2 4 7 9 11 | 11 | 0 3 | 239 |
0 1 2 4 7 9 11 | 0 4 7 | 0 7 9 | 0:0 7 9 | 0 1 2 4 7 9 11 | 0:0 1 2 4 7 9 11 | '' | 4 7 | 239 |
0 1 2 3 4 7 9 11 | 0 4 7 | 0 7 9 | 0:0 7 9 | 0 1 2 4 7 9 11 | 0:0 1 2 4 7 9 11 | 3 | 4 7 | 239 |
0 1 2 4 7 9 10 11 | 0 4 7 | 0 7 9 | 0:0 7 9 | 0 1 2 4 7 9 11 | 0:0 1 2 4 7 9 11 | 10 | 4 7 | 239 |
0 1 3 6 8 10 11 | 0 4 7 | 6 8 11 | 11:0 7 9 | 0 1 3 6 8 10 11 | 11:0 1 2 4 7 9 11 | '' | 3 6 | 239 |
0 2 5 7 9 10 11 | 0 4 7 | 5 7 10 | 10:0 7 9 | 0 2 5 7 9 10 11 | 10:0 1 2 4 7 9 11 | '' | 2 5 | 239 |
0 1 2 5 7 9 10 11 | 0 4 7 | 5 7 10 | 10:0 7 9 | 0 2 5 7 9 10 11 | 10:0 1 2 4 7 9 11 | 1 | 2 5 | 239 |
0 2 5 7 8 9 10 11 | 0 4 7 | 5 7 10 | 10:0 7 9 | 0 2 5 7 9 10 11 | 10:0 1 2 4 7 9 11 | 8 | 2 5 | 239 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 4 5 6 9 | 0 4 7 | 2 5 9 | 2:0 3 7 | 0 1 2 4 5 6 9 | 2:0 2 3 4 7 10 11 | '' | 9 | 252 |
0 3 4 5 7 8 9 | 0 4 7 | 0 5 8 | 5:0 3 7 | 0 3 4 5 7 8 9 | 5:0 2 3 4 7 10 11 | '' | 0 | 252 |
0 2 3 4 5 7 8 9 | 0 4 7 | 0 5 8 | 5:0 3 7 | 0 3 4 5 7 8 9 | 5:0 2 3 4 7 10 11 | 2 | 0 | 252 |
0 1 2 3 5 6 7 10 | 0 4 7 | 3 6 10 | 3:0 3 7 | 1 2 3 5 6 7 10 | 3:0 2 3 4 7 10 11 | 0 | 10 | 252 |
0 1 4 7 8 9 11 | 0 4 7 | 0 4 9 | 9:0 3 7 | 0 1 4 7 8 9 11 | 9:0 2 3 4 7 10 11 | '' | 4 | 252 |
0 1 4 6 7 8 9 11 | 0 4 7 | 0 4 9 | 9:0 3 7 | 0 1 4 7 8 9 11 | 9:0 2 3 4 7 10 11 | 6 | 4 | 252 |
0 1 4 7 8 9 10 11 | 0 4 7 | 0 4 9 | 9:0 3 7 | 0 1 4 7 8 9 11 | 9:0 2 3 4 7 10 11 | 10 | 4 | 252 |
0 2 3 4 7 10 11 | 0 4 7 | 0 3 7 | 0:0 3 7 | 0 2 3 4 7 10 11 | 0:0 2 3 4 7 10 11 | '' | 7 | 252 |
0 1 2 3 4 7 10 11 | 0 4 7 | 0 3 7 | 0:0 3 7 | 0 2 3 4 7 10 11 | 0:0 2 3 4 7 10 11 | 1 | 7 | 252 |
0 2 3 4 7 9 10 11 | 0 4 7 | 0 3 7 | 0:0 3 7 | 0 2 3 4 7 10 11 | 0:0 2 3 4 7 10 11 | 9 | 7 | 252 |
0 3 6 7 8 10 11 | 0 4 7 | 3 8 11 | 8:0 3 7 | 0 3 6 7 8 10 11 | 8:0 2 3 4 7 10 11 | '' | 3 | 252 |
0 3 5 6 7 8 10 11 | 0 4 7 | 3 8 11 | 8:0 3 7 | 0 3 6 7 8 10 11 | 8:0 2 3 4 7 10 11 | 5 | 3 | 252 |
0 3 6 7 8 9 10 11 | 0 4 7 | 3 8 11 | 8:0 3 7 | 0 3 6 7 8 10 11 | 8:0 2 3 4 7 10 11 | 9 | 3 | 252 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 5 7 8 | 0 4 7 | 0 1 8 | 1:0 7 11 | 0 1 3 4 5 7 8 | 1:0 2 3 4 6 7 11 | '' | 0 8 | 259 |
0 1 2 3 4 5 7 8 | 0 4 7 | 0 1 8 | 1:0 7 11 | 0 1 3 4 5 7 8 | 1:0 2 3 4 6 7 11 | 2 | 0 8 | 259 |
0 1 3 4 5 6 7 8 | 0 4 7 | 0 1 8 | 1:0 7 11 | 0 1 3 4 5 7 8 | 1:0 2 3 4 6 7 11 | 6 | 0 8 | 259 |
0 1 2 3 4 5 6 7 8 | 0 4 7 | 0 1 8 | 1:0 7 11 | 0 1 3 4 5 7 8 | 1:0 2 3 4 6 7 11 | 2 6 | 0 8 | 259 |
0 2 3 4 6 7 11 | 0 4 7 | 0 7 11 | 0:0 7 11 | 0 2 3 4 6 7 11 | 0:0 2 3 4 6 7 11 | '' | 7 11 | 259 |
0 1 2 3 4 6 7 11 | 0 4 7 | 0 7 11 | 0:0 7 11 | 0 2 3 4 6 7 11 | 0:0 2 3 4 6 7 11 | 1 | 7 11 | 259 |
0 2 3 4 5 6 7 11 | 0 4 7 | 0 7 11 | 0:0 7 11 | 0 2 3 4 6 7 11 | 0:0 2 3 4 6 7 11 | 5 | 7 11 | 259 |
0 1 2 3 4 5 6 7 11 | 0 4 7 | 0 7 11 | 0:0 7 11 | 0 2 3 4 6 7 11 | 0:0 2 3 4 6 7 11 | 1 5 | 7 11 | 259 |
0 1 3 4 8 9 10 11 | 0 4 7 | 4 8 9 | 9:0 7 11 | 0 1 3 4 8 9 11 | 9:0 2 3 4 6 7 11 | 10 | 4 8 | 259 |
0 4 5 7 8 9 11 | 0 4 7 | 0 4 5 | 5:0 7 11 | 0 4 5 7 8 9 11 | 5:0 2 3 4 6 7 11 | '' | 0 4 | 259 |
0 4 5 7 8 9 10 11 | 0 4 7 | 0 4 5 | 5:0 7 11 | 0 4 5 7 8 9 11 | 5:0 2 3 4 6 7 11 | 10 | 0 4 | 259 |
0 4 5 6 7 8 9 10 11 | 0 4 7 | 0 4 5 | 5:0 7 11 | 0 4 5 7 8 9 11 | 5:0 2 3 4 6 7 11 | 6 10 | 0 4 | 259 |
0 2 3 7 8 10 11 | 0 4 7 | 3 7 8 | 8:0 7 11 | 0 2 3 7 8 10 11 | 8:0 2 3 4 6 7 11 | '' | 3 7 | 259 |
0 1 2 3 7 8 10 11 | 0 4 7 | 3 7 8 | 8:0 7 11 | 0 2 3 7 8 10 11 | 8:0 2 3 4 6 7 11 | 1 | 3 7 | 259 |
0 2 3 7 8 9 10 11 | 0 4 7 | 3 7 8 | 8:0 7 11 | 0 2 3 7 8 10 11 | 8:0 2 3 4 6 7 11 | 9 | 3 7 | 259 |
0 1 2 3 7 8 9 10 11 | 0 4 7 | 3 7 8 | 8:0 7 11 | 0 2 3 7 8 10 11 | 8:0 2 3 4 6 7 11 | 1 9 | 3 7 | 259 |
0 1 2 6 7 9 10 11 | 0 4 7 | 2 6 7 | 7:0 7 11 | 1 2 6 7 9 10 11 | 7:0 2 3 4 6 7 11 | 0 | 2 6 | 259 |
0 1 2 6 7 8 9 10 11 | 0 4 7 | 2 6 7 | 7:0 7 11 | 1 2 6 7 9 10 11 | 7:0 2 3 4 6 7 11 | 0 8 | 2 6 | 259 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 4 6 7 9 | 0 4 7 | 0 2 9 | 2:0 7 10 | 0 1 2 4 6 7 9 | 2:0 2 4 5 7 10 11 | '' | 4 9 | 261 |
0 1 2 3 4 6 7 9 | 0 4 7 | 0 2 9 | 2:0 7 10 | 0 1 2 4 6 7 9 | 2:0 2 4 5 7 10 11 | 3 | 4 9 | 261 |
0 1 2 4 6 7 8 9 | 0 4 7 | 0 2 9 | 2:0 7 10 | 0 1 2 4 6 7 9 | 2:0 2 4 5 7 10 11 | 8 | 4 9 | 261 |
0 1 3 6 7 8 10 | 0 4 7 | 3 6 8 | 8:0 7 10 | 0 1 3 6 7 8 10 | 8:0 2 4 5 7 10 11 | '' | 3 10 | 261 |
0 1 2 3 6 7 8 10 | 0 4 7 | 3 6 8 | 8:0 7 10 | 0 1 3 6 7 8 10 | 8:0 2 4 5 7 10 11 | 2 | 3 10 | 261 |
0 1 3 6 7 8 9 10 | 0 4 7 | 3 6 8 | 8:0 7 10 | 0 1 3 6 7 8 10 | 8:0 2 4 5 7 10 11 | 9 | 3 10 | 261 |
0 3 4 5 7 9 10 | 0 4 7 | 0 3 5 | 5:0 7 10 | 0 3 4 5 7 9 10 | 5:0 2 4 5 7 10 11 | '' | 0 7 | 261 |
0 3 4 5 6 7 9 10 | 0 4 7 | 0 3 5 | 5:0 7 10 | 0 3 4 5 7 9 10 | 5:0 2 4 5 7 10 11 | 6 | 0 7 | 261 |
0 3 4 5 7 9 10 11 | 0 4 7 | 0 3 5 | 5:0 7 10 | 0 3 4 5 7 9 10 | 5:0 2 4 5 7 10 11 | 11 | 0 7 | 261 |
0 2 3 5 8 9 10 | 0 4 7 | 5 8 10 | 10:0 7 10 | 0 2 3 5 8 9 10 | 10:0 2 4 5 7 10 11 | '' | 0 5 | 261 |
0 2 3 5 8 9 10 11 | 0 4 7 | 5 8 10 | 10:0 7 10 | 0 2 3 5 8 9 10 | 10:0 2 4 5 7 10 11 | 11 | 0 5 | 261 |
0 1 3 5 6 8 11 | 0 4 7 | 1 8 11 | 1:0 7 10 | 0 1 3 5 6 8 11 | 1:0 2 4 5 7 10 11 | '' | 3 8 | 261 |
0 1 3 5 6 7 8 11 | 0 4 7 | 1 8 11 | 1:0 7 10 | 0 1 3 5 6 8 11 | 1:0 2 4 5 7 10 11 | 7 | 3 8 | 261 |
0 1 2 5 6 7 9 11 | 0 4 7 | 2 5 7 | 7:0 7 10 | 0 2 5 6 7 9 11 | 7:0 2 4 5 7 10 11 | 1 | 2 9 | 261 |
0 2 4 5 7 10 11 | 0 4 7 | 0 7 10 | 0:0 7 10 | 0 2 4 5 7 10 11 | 0:0 2 4 5 7 10 11 | '' | 2 7 | 261 |
0 1 2 4 5 7 10 11 | 0 4 7 | 0 7 10 | 0:0 7 10 | 0 2 4 5 7 10 11 | 0:0 2 4 5 7 10 11 | 1 | 2 7 | 261 |
0 2 4 5 6 7 10 11 | 0 4 7 | 0 7 10 | 0:0 7 10 | 0 2 4 5 7 10 11 | 0:0 2 4 5 7 10 11 | 6 | 2 7 | 261 |
0 1 4 5 6 8 10 11 | 0 4 7 | 1 4 6 | 6:0 7 10 | 1 4 5 6 8 10 11 | 6:0 2 4 5 7 10 11 | 0 | 1 8 | 261 |
0 1 3 4 6 9 10 11 | 0 4 7 | 6 9 11 | 11:0 7 10 | 1 3 4 6 9 10 11 | 11:0 2 4 5 7 10 11 | 0 | 1 6 | 261 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 5 6 7 8 9 | 0 4 7 | 1 2 5 | 1:0 1 4 | 0 1 2 5 6 8 9 | 2:0 3 4 6 7 10 11 | 7 | 5 9 | 270 |
0 1 3 4 7 8 9 | 0 4 7 | 0 8 9 | 8:0 1 4 | 0 1 3 4 7 8 9 | 9:0 3 4 6 7 10 11 | '' | 0 4 | 270 |
0 1 2 3 4 7 8 9 | 0 4 7 | 0 8 9 | 8:0 1 4 | 0 1 3 4 7 8 9 | 9:0 3 4 6 7 10 11 | 2 | 0 4 | 270 |
0 1 3 4 6 7 8 9 | 0 4 7 | 0 8 9 | 8:0 1 4 | 0 1 3 4 7 8 9 | 9:0 3 4 6 7 10 11 | 6 | 0 4 | 270 |
0 1 4 5 6 9 10 | 0 4 7 | 5 6 9 | 5:0 1 4 | 0 1 4 5 6 9 10 | 6:0 3 4 6 7 10 11 | '' | 1 9 | 270 |
0 1 3 4 5 6 9 10 | 0 4 7 | 5 6 9 | 5:0 1 4 | 0 1 4 5 6 9 10 | 6:0 3 4 6 7 10 11 | 3 | 1 9 | 270 |
0 1 2 3 6 7 9 10 | 0 4 7 | 2 3 6 | 2:0 1 4 | 1 2 3 6 7 9 10 | 3:0 3 4 6 7 10 11 | 0 | 6 10 | 270 |
0 1 4 5 7 8 11 | 0 4 7 | 0 1 4 | 0:0 1 4 | 0 1 4 5 7 8 11 | 1:0 3 4 6 7 10 11 | '' | 4 8 | 270 |
0 1 4 5 6 7 8 11 | 0 4 7 | 0 1 4 | 0:0 1 4 | 0 1 4 5 7 8 11 | 1:0 3 4 6 7 10 11 | 6 | 4 8 | 270 |
0 1 4 5 7 8 10 11 | 0 4 7 | 0 1 4 | 0:0 1 4 | 0 1 4 5 7 8 11 | 1:0 3 4 6 7 10 11 | 10 | 4 8 | 270 |
0 2 3 6 7 8 11 | 0 4 7 | 7 8 11 | 7:0 1 4 | 0 2 3 6 7 8 11 | 8:0 3 4 6 7 10 11 | '' | 3 11 | 270 |
0 1 2 3 6 7 8 11 | 0 4 7 | 7 8 11 | 7:0 1 4 | 0 2 3 6 7 8 11 | 8:0 3 4 6 7 10 11 | 1 | 3 11 | 270 |
0 2 3 5 6 7 8 11 | 0 4 7 | 7 8 11 | 7:0 1 4 | 0 2 3 6 7 8 11 | 8:0 3 4 6 7 10 11 | 5 | 3 11 | 270 |
0 3 4 5 8 9 11 | 0 4 7 | 4 5 8 | 4:0 1 4 | 0 3 4 5 8 9 11 | 5:0 3 4 6 7 10 11 | '' | 0 8 | 270 |
0 3 4 6 7 10 11 | 0 4 7 | 0 3 11 | 11:0 1 4 | 0 3 4 6 7 10 11 | 0:0 3 4 6 7 10 11 | '' | 3 7 | 270 |
0 3 4 5 6 7 10 11 | 0 4 7 | 0 3 11 | 11:0 1 4 | 0 3 4 6 7 10 11 | 0:0 3 4 6 7 10 11 | 5 | 3 7 | 270 |
0 3 4 6 7 9 10 11 | 0 4 7 | 0 3 11 | 11:0 1 4 | 0 3 4 6 7 10 11 | 0:0 3 4 6 7 10 11 | 9 | 3 7 | 270 |
0 1 2 5 6 7 10 11 | 0 4 7 | 6 7 10 | 6:0 1 4 | 1 2 5 6 7 10 11 | 7:0 3 4 6 7 10 11 | 0 | 2 10 | 270 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 4 5 7 8 9 | 0 4 7 | 0 1 5 9 | 5:0 4 7 8 | 0 1 4 5 7 8 9 | 9:0 3 4 7 8 10 11 | '' | 0 1 4 5 9 | 272 |
0 1 2 4 5 7 8 9 | 0 4 7 | 0 1 5 9 | 5:0 4 7 8 | 0 1 4 5 7 8 9 | 9:0 3 4 7 8 10 11 | 2 | 0 1 4 5 9 | 272 |
0 1 4 5 6 7 8 9 | 0 4 7 | 0 1 5 9 | 5:0 4 7 8 | 0 1 4 5 7 8 9 | 9:0 3 4 7 8 10 11 | 6 | 0 1 4 5 9 | 272 |
0 1 4 5 7 8 9 10 | 0 4 7 | 0 1 5 9 | 5:0 4 7 8 | 0 1 4 5 7 8 9 | 9:0 3 4 7 8 10 11 | 10 | 0 1 4 5 9 | 272 |
0 2 3 4 7 8 11 | 0 4 7 | 0 4 7 8 | 0:0 4 7 8 | 0 2 3 4 7 8 11 | 4:0 3 4 7 8 10 11 | '' | 0 4 7 8 11 | 272 |
0 1 2 3 4 7 8 11 | 0 4 7 | 0 4 7 8 | 0:0 4 7 8 | 0 2 3 4 7 8 11 | 4:0 3 4 7 8 10 11 | 1 | 0 4 7 8 11 | 272 |
0 2 3 4 5 7 8 11 | 0 4 7 | 0 4 7 8 | 0:0 4 7 8 | 0 2 3 4 7 8 11 | 4:0 3 4 7 8 10 11 | 5 | 0 4 7 8 11 | 272 |
0 2 3 4 7 8 9 11 | 0 4 7 | 0 4 7 8 | 0:0 4 7 8 | 0 2 3 4 7 8 11 | 4:0 3 4 7 8 10 11 | 9 | 0 4 7 8 11 | 272 |
0 3 4 6 7 8 11 | 0 4 7 | 0 4 8 11 | 4:0 4 7 8 | 0 3 4 6 7 8 11 | 8:0 3 4 7 8 10 11 | '' | 0 3 4 8 11 | 272 |
0 1 3 4 6 7 8 11 | 0 4 7 | 0 4 8 11 | 4:0 4 7 8 | 0 3 4 6 7 8 11 | 8:0 3 4 7 8 10 11 | 1 | 0 3 4 8 11 | 272 |
0 3 4 5 6 7 8 11 | 0 4 7 | 0 4 8 11 | 4:0 4 7 8 | 0 3 4 6 7 8 11 | 8:0 3 4 7 8 10 11 | 5 | 0 3 4 8 11 | 272 |
0 3 4 6 7 8 9 11 | 0 4 7 | 0 4 8 11 | 4:0 4 7 8 | 0 3 4 6 7 8 11 | 8:0 3 4 7 8 10 11 | 9 | 0 3 4 8 11 | 272 |
0 1 4 5 8 9 11 | 0 4 7 | 1 4 5 9 | 9:0 4 7 8 | 0 1 4 5 8 9 11 | 1:0 3 4 7 8 10 11 | '' | 1 4 5 8 9 | 272 |
0 1 2 3 6 7 10 11 | 0 4 7 | 3 6 7 11 | 11:0 4 7 8 | 1 2 3 6 7 10 11 | 3:0 3 4 7 8 10 11 | 0 | 3 6 7 10 11 | 272 |
0 2 3 5 6 7 10 11 | 0 4 7 | 3 7 10 11 | 3:0 4 7 8 | 2 3 5 6 7 10 11 | 7:0 3 4 7 8 10 11 | 0 | 2 3 7 10 11 | 272 |
0 3 4 7 8 10 11 | 0 4 7 | 0 3 4 8 | 8:0 4 7 8 | 0 3 4 7 8 10 11 | 0:0 3 4 7 8 10 11 | '' | 0 3 4 7 8 | 272 |
0 1 3 4 7 8 10 11 | 0 4 7 | 0 3 4 8 | 8:0 4 7 8 | 0 3 4 7 8 10 11 | 0:0 3 4 7 8 10 11 | 1 | 0 3 4 7 8 | 272 |
0 3 4 5 7 8 10 11 | 0 4 7 | 0 3 4 8 | 8:0 4 7 8 | 0 3 4 7 8 10 11 | 0:0 3 4 7 8 10 11 | 5 | 0 3 4 7 8 | 272 |
0 3 4 7 8 9 10 11 | 0 4 7 | 0 3 4 8 | 8:0 4 7 8 | 0 3 4 7 8 10 11 | 0:0 3 4 7 8 10 11 | 9 | 0 3 4 7 8 | 272 |
0 2 3 6 7 9 10 11 | 0 4 7 | 2 3 7 11 | 7:0 4 7 8 | 2 3 6 7 9 10 11 | 11:0 3 4 7 8 10 11 | 0 | 2 3 6 7 11 | 272 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 5 6 7 8 9 | 0 4 7 | 2 5 8 | 5:0 3 9 | 0 2 3 5 6 8 9 | 5:0 1 3 4 7 9 10 | 7 | 0 9 | 277 |
0 1 3 4 6 7 10 | 0 4 7 | 0 3 6 | 3:0 3 9 | 0 1 3 4 6 7 10 | 3:0 1 3 4 7 9 10 | '' | 7 10 | 277 |
0 1 2 3 4 6 7 10 | 0 4 7 | 0 3 6 | 3:0 3 9 | 0 1 3 4 6 7 10 | 3:0 1 3 4 7 9 10 | 2 | 7 10 | 277 |
0 1 3 4 5 6 7 10 | 0 4 7 | 0 3 6 | 3:0 3 9 | 0 1 3 4 6 7 10 | 3:0 1 3 4 7 9 10 | 5 | 7 10 | 277 |
0 1 3 4 7 9 10 | 0 4 7 | 0 3 9 | 0:0 3 9 | 0 1 3 4 7 9 10 | 0:0 1 3 4 7 9 10 | '' | 4 7 | 277 |
0 1 2 3 4 7 9 10 | 0 4 7 | 0 3 9 | 0:0 3 9 | 0 1 3 4 7 9 10 | 0:0 1 3 4 7 9 10 | 2 | 4 7 | 277 |
0 1 3 4 7 9 10 11 | 0 4 7 | 0 3 9 | 0:0 3 9 | 0 1 3 4 7 9 10 | 0:0 1 3 4 7 9 10 | 11 | 4 7 | 277 |
0 1 4 6 7 9 10 | 0 4 7 | 0 6 9 | 9:0 3 9 | 0 1 4 6 7 9 10 | 9:0 1 3 4 7 9 10 | '' | 1 4 | 277 |
0 1 4 6 7 8 9 10 | 0 4 7 | 0 6 9 | 9:0 3 9 | 0 1 4 6 7 9 10 | 9:0 1 3 4 7 9 10 | 8 | 1 4 | 277 |
0 1 4 6 7 9 10 11 | 0 4 7 | 0 6 9 | 9:0 3 9 | 0 1 4 6 7 9 10 | 9:0 1 3 4 7 9 10 | 11 | 1 4 | 277 |
0 2 3 5 6 9 11 | 0 4 7 | 2 5 11 | 2:0 3 9 | 0 2 3 5 6 9 11 | 2:0 1 3 4 7 9 10 | '' | 6 9 | 277 |
0 2 3 6 8 9 11 | 0 4 7 | 2 8 11 | 11:0 3 9 | 0 2 3 6 8 9 11 | 11:0 1 3 4 7 9 10 | '' | 3 6 | 277 |
0 3 5 6 7 8 9 11 | 0 4 7 | 5 8 11 | 8:0 3 9 | 0 3 5 6 8 9 11 | 8:0 1 3 4 7 9 10 | 7 | 0 3 | 277 |
0 1 2 5 7 8 10 11 | 0 4 7 | 1 7 10 | 10:0 3 9 | 1 2 5 7 8 10 11 | 10:0 1 3 4 7 9 10 | 0 | 2 5 | 277 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 5 6 8 10 | 0 4 7 | 1 6 8 | 6:0 2 7 | 0 1 3 5 6 8 10 | 1:0 2 4 5 7 9 11 | '' | 1 8 | 281 |
0 1 3 5 7 8 10 | 0 4 7 | 1 3 8 | 1:0 2 7 | 0 1 3 5 7 8 10 | 1:0 2 4 6 7 9 11 | '' | 3 8 | 281 |
0 1 3 5 7 8 10 11 | 0 4 7 | 1 3 8 | 1:0 2 7 | 0 1 3 5 7 8 10 | 1:0 2 4 6 7 9 11 | 11 | 3 8 | 281 |
0 2 3 5 7 8 10 | 0 4 7 | 3 8 10 | 8:0 2 7 | 0 2 3 5 7 8 10 | 3:0 2 4 5 7 9 11 | '' | 3 10 | 281 |
0 2 3 5 6 7 8 10 | 0 4 7 | 3 8 10 | 8:0 2 7 | 0 2 3 5 7 8 10 | 3:0 2 4 5 7 9 11 | 6 | 3 10 | 281 |
0 2 3 5 7 9 10 | 0 4 7 | 3 5 10 | 3:0 2 7 | 0 2 3 5 7 9 10 | 3:0 2 4 6 7 9 11 | '' | 5 10 | 281 |
0 1 2 3 5 7 9 10 | 0 4 7 | 3 5 10 | 3:0 2 7 | 0 2 3 5 7 9 10 | 3:0 2 4 6 7 9 11 | 1 | 5 10 | 281 |
0 2 4 5 7 9 10 | 0 4 7 | 0 5 10 | 10:0 2 7 | 0 2 4 5 7 9 10 | 5:0 2 4 5 7 9 11 | '' | 0 5 | 281 |
0 2 4 5 7 8 9 10 | 0 4 7 | 0 5 10 | 10:0 2 7 | 0 2 4 5 7 9 10 | 5:0 2 4 5 7 9 11 | 8 | 0 5 | 281 |
0 2 4 5 7 9 11 | 0 4 7 | 0 5 7 | 5:0 2 7 | 0 2 4 5 7 9 11 | 0:0 2 4 5 7 9 11 | '' | 0 7 | 281 |
0 2 3 4 5 7 9 11 | 0 4 7 | 0 5 7 | 5:0 2 7 | 0 2 4 5 7 9 11 | 0:0 2 4 5 7 9 11 | 3 | 0 7 | 281 |
0 2 4 6 7 9 11 | 0 4 7 | 0 2 7 | 0:0 2 7 | 0 2 4 6 7 9 11 | 0:0 2 4 6 7 9 11 | '' | 2 7 | 281 |
0 2 4 6 7 9 10 11 | 0 4 7 | 0 2 7 | 0:0 2 7 | 0 2 4 6 7 9 11 | 0:0 2 4 6 7 9 11 | 10 | 2 7 | 281 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 4 5 6 7 8 10 | 0 4 7 | 0 1 6 | 6:0 6 7 | 0 1 4 5 6 7 8 10 | 6:0 1 2 4 6 7 10 11 | '' | 1 | 295 |
0 2 3 6 7 8 9 10 | 0 4 7 | 2 3 8 | 8:0 6 7 | 0 2 3 6 7 8 9 10 | 8:0 1 2 4 6 7 10 11 | '' | 3 | 295 |
0 1 2 3 5 7 8 11 | 0 4 7 | 1 7 8 | 1:0 6 7 | 0 1 2 3 5 7 8 11 | 1:0 1 2 4 6 7 10 11 | '' | 8 | 295 |
0 3 4 5 6 7 9 11 | 0 4 7 | 0 5 11 | 5:0 6 7 | 0 3 4 5 6 7 9 11 | 5:0 1 2 4 6 7 10 11 | '' | 0 | 295 |
0 1 2 4 6 7 10 11 | 0 4 7 | 0 6 7 | 0:0 6 7 | 0 1 2 4 6 7 10 11 | 0:0 1 2 4 6 7 10 11 | '' | 7 | 295 |
0 1 3 5 6 9 10 11 | 0 4 7 | 5 6 11 | 11:0 6 7 | 0 1 3 5 6 9 10 11 | 11:0 1 2 4 6 7 10 11 | '' | 6 | 295 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 5 6 7 8 9 | 0 4 7 | 1 2 5 8 | 1:0 1 4 7 | 0 1 2 3 5 6 8 9 | 2:0 1 3 4 6 7 10 11 | 7 | 0 5 8 9 | 305 |
0 1 4 5 6 7 9 10 | 0 4 7 | 0 5 6 9 | 5:0 1 4 7 | 0 1 4 5 6 7 9 10 | 6:0 1 3 4 6 7 10 11 | '' | 0 1 4 9 | 305 |
0 1 4 5 6 7 9 10 11 | 0 4 7 | 0 5 6 9 | 5:0 1 4 7 | 0 1 4 5 6 7 9 10 | 6:0 1 3 4 6 7 10 11 | 11 | 0 1 4 9 | 305 |
0 1 3 4 7 8 9 10 | 0 4 7 | 0 3 8 9 | 8:0 1 4 7 | 0 1 3 4 7 8 9 10 | 9:0 1 3 4 6 7 10 11 | '' | 0 3 4 7 | 305 |
0 1 2 3 4 7 8 9 10 | 0 4 7 | 0 3 8 9 | 8:0 1 4 7 | 0 1 3 4 7 8 9 10 | 9:0 1 3 4 6 7 10 11 | 2 | 0 3 4 7 | 305 |
0 1 2 4 5 7 8 11 | 0 4 7 | 0 1 4 7 | 0:0 1 4 7 | 0 1 2 4 5 7 8 11 | 1:0 1 3 4 6 7 10 11 | '' | 4 7 8 11 | 305 |
0 1 2 4 5 6 7 8 11 | 0 4 7 | 0 1 4 7 | 0:0 1 4 7 | 0 1 2 4 5 7 8 11 | 1:0 1 3 4 6 7 10 11 | 6 | 4 7 8 11 | 305 |
0 2 3 6 7 8 9 11 | 0 4 7 | 2 7 8 11 | 7:0 1 4 7 | 0 2 3 6 7 8 9 11 | 8:0 1 3 4 6 7 10 11 | '' | 2 3 6 11 | 305 |
0 1 2 3 6 7 8 9 11 | 0 4 7 | 2 7 8 11 | 7:0 1 4 7 | 0 2 3 6 7 8 9 11 | 8:0 1 3 4 6 7 10 11 | 1 | 2 3 6 11 | 305 |
0 1 3 4 6 7 10 11 | 0 4 7 | 0 3 6 11 | 11:0 1 4 7 | 0 1 3 4 6 7 10 11 | 0:0 1 3 4 6 7 10 11 | '' | 3 6 7 10 | 305 |
0 1 3 4 5 6 7 10 11 | 0 4 7 | 0 3 6 11 | 11:0 1 4 7 | 0 1 3 4 6 7 10 11 | 0:0 1 3 4 6 7 10 11 | 5 | 3 6 7 10 | 305 |
0 2 3 4 5 6 9 10 11 | 0 4 7 | 2 5 10 11 | 10:0 1 4 7 | 0 2 3 5 6 9 10 11 | 11:0 1 3 4 6 7 10 11 | 4 | 2 5 6 9 | 305 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 5 6 8 10 | 0 4 7 | 1 6 8 10 | 6:0 2 4 7 | 0 1 2 3 5 6 8 10 | 1:0 1 2 4 5 7 9 11 | '' | 1 5 8 10 | 306 |
0 1 2 3 4 5 6 8 10 | 0 4 7 | 1 6 8 10 | 6:0 2 4 7 | 0 1 2 3 5 6 8 10 | 1:0 1 2 4 5 7 9 11 | 4 | 1 5 8 10 | 306 |
0 2 3 4 5 7 8 10 | 0 4 7 | 0 3 8 10 | 8:0 2 4 7 | 0 2 3 4 5 7 8 10 | 3:0 1 2 4 5 7 9 11 | '' | 0 3 7 10 | 306 |
0 2 3 4 5 6 7 8 10 | 0 4 7 | 0 3 8 10 | 8:0 2 4 7 | 0 2 3 4 5 7 8 10 | 3:0 1 2 4 5 7 9 11 | 6 | 0 3 7 10 | 306 |
0 2 4 5 6 7 9 10 | 0 4 7 | 0 2 5 10 | 10:0 2 4 7 | 0 2 4 5 6 7 9 10 | 5:0 1 2 4 5 7 9 11 | '' | 0 2 5 9 | 306 |
0 2 4 5 6 7 8 9 10 | 0 4 7 | 0 2 5 10 | 10:0 2 4 7 | 0 2 4 5 6 7 9 10 | 5:0 1 2 4 5 7 9 11 | 8 | 0 2 5 9 | 306 |
0 1 3 5 7 8 9 10 | 0 4 7 | 1 3 5 8 | 1:0 2 4 7 | 0 1 3 5 7 8 9 10 | 8:0 1 2 4 5 7 9 11 | '' | 0 3 5 8 | 306 |
0 1 3 5 7 8 9 10 11 | 0 4 7 | 1 3 5 8 | 1:0 2 4 7 | 0 1 3 5 7 8 9 10 | 8:0 1 2 4 5 7 9 11 | 11 | 0 3 5 8 | 306 |
0 1 2 4 5 7 9 11 | 0 4 7 | 0 5 7 9 | 5:0 2 4 7 | 0 1 2 4 5 7 9 11 | 0:0 1 2 4 5 7 9 11 | '' | 0 4 7 9 | 306 |
0 1 2 3 4 5 7 9 11 | 0 4 7 | 0 5 7 9 | 5:0 2 4 7 | 0 1 2 4 5 7 9 11 | 0:0 1 2 4 5 7 9 11 | 3 | 0 4 7 9 | 306 |
0 2 4 6 7 8 9 11 | 0 4 7 | 0 2 4 7 | 0:0 2 4 7 | 0 2 4 6 7 8 9 11 | 7:0 1 2 4 5 7 9 11 | '' | 2 4 7 11 | 306 |
0 2 4 6 7 8 9 10 11 | 0 4 7 | 0 2 4 7 | 0:0 2 4 7 | 0 2 4 6 7 8 9 11 | 7:0 1 2 4 5 7 9 11 | 10 | 2 4 7 11 | 306 |
0 1 3 4 6 8 10 11 | 0 4 7 | 4 6 8 11 | 4:0 2 4 7 | 0 1 3 4 6 8 10 11 | 11:0 1 2 4 5 7 9 11 | '' | 3 6 8 11 | 306 |
0 1 2 3 4 6 8 10 11 | 0 4 7 | 4 6 8 11 | 4:0 2 4 7 | 0 1 3 4 6 8 10 11 | 11:0 1 2 4 5 7 9 11 | 2 | 3 6 8 11 | 306 |
0 2 3 5 7 9 10 11 | 0 4 7 | 3 5 7 10 | 3:0 2 4 7 | 0 2 3 5 7 9 10 11 | 10:0 1 2 4 5 7 9 11 | '' | 2 5 7 10 | 306 |
0 1 2 3 5 7 9 10 11 | 0 4 7 | 3 5 7 10 | 3:0 2 4 7 | 0 2 3 5 7 9 10 11 | 10:0 1 2 4 5 7 9 11 | 1 | 2 5 7 10 | 306 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 5 7 8 10 | 0 4 7 | 1 3 8 10 | 1:0 2 7 9 | 0 1 2 3 5 7 8 10 | 10:0 2 3 4 5 7 9 10 | '' | 3 5 8 10 | 309 |
0 2 3 4 5 7 9 10 | 0 4 7 | 0 3 5 10 | 3:0 2 7 9 | 0 2 3 4 5 7 9 10 | 0:0 2 3 4 5 7 9 10 | '' | 0 5 7 10 | 309 |
0 2 3 5 7 8 9 10 | 0 4 7 | 3 5 8 10 | 8:0 2 7 9 | 0 2 3 5 7 8 9 10 | 5:0 2 3 4 5 7 9 10 | '' | 0 3 5 10 | 309 |
0 1 2 4 6 7 9 11 | 0 4 7 | 0 2 7 9 | 0:0 2 7 9 | 0 1 2 4 6 7 9 11 | 9:0 2 3 4 5 7 9 10 | '' | 2 4 7 9 | 309 |
0 2 4 5 6 7 9 11 | 0 4 7 | 0 2 5 7 | 5:0 2 7 9 | 0 2 4 5 6 7 9 11 | 2:0 2 3 4 5 7 9 10 | '' | 0 2 7 9 | 309 |
0 2 4 5 7 9 10 11 | 0 4 7 | 0 5 7 10 | 10:0 2 7 9 | 0 2 4 5 7 9 10 11 | 7:0 2 3 4 5 7 9 10 | '' | 0 2 5 7 | 309 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 4 5 6 7 9 | 0 4 7 | 0 2 5 9 | 5:0 4 7 9 | 0 1 2 4 5 6 7 9 | 2:0 2 3 4 5 7 10 11 | '' | 0 4 9 | 311 |
0 1 2 3 4 5 6 7 9 | 0 4 7 | 0 2 5 9 | 5:0 4 7 9 | 0 1 2 4 5 6 7 9 | 2:0 2 3 4 5 7 10 11 | 3 | 0 4 9 | 311 |
0 3 4 5 7 8 9 10 | 0 4 7 | 0 3 5 8 | 8:0 4 7 9 | 0 3 4 5 7 8 9 10 | 5:0 2 3 4 5 7 10 11 | '' | 0 3 7 | 311 |
0 3 4 5 6 7 8 9 10 | 0 4 7 | 0 3 5 8 | 8:0 4 7 9 | 0 3 4 5 7 8 9 10 | 5:0 2 3 4 5 7 10 11 | 6 | 0 3 7 | 311 |
0 1 2 4 7 8 9 11 | 0 4 7 | 0 4 7 9 | 0:0 4 7 9 | 0 1 2 4 7 8 9 11 | 9:0 2 3 4 5 7 10 11 | '' | 4 7 11 | 311 |
0 1 2 4 7 8 9 10 11 | 0 4 7 | 0 4 7 9 | 0:0 4 7 9 | 0 1 2 4 7 8 9 11 | 9:0 2 3 4 5 7 10 11 | 10 | 4 7 11 | 311 |
0 2 3 4 5 7 10 11 | 0 4 7 | 0 3 7 10 | 3:0 4 7 9 | 0 2 3 4 5 7 10 11 | 0:0 2 3 4 5 7 10 11 | '' | 2 7 10 | 311 |
0 1 2 3 4 5 7 10 11 | 0 4 7 | 0 3 7 10 | 3:0 4 7 9 | 0 2 3 4 5 7 10 11 | 0:0 2 3 4 5 7 10 11 | 1 | 2 7 10 | 311 |
0 1 3 6 7 8 10 11 | 0 4 7 | 3 6 8 11 | 11:0 4 7 9 | 0 1 3 6 7 8 10 11 | 8:0 2 3 4 5 7 10 11 | '' | 3 6 10 | 311 |
0 1 3 6 7 8 9 10 11 | 0 4 7 | 3 6 8 11 | 11:0 4 7 9 | 0 1 3 6 7 8 10 11 | 8:0 2 3 4 5 7 10 11 | 9 | 3 6 10 | 311 |
0 2 5 6 7 9 10 11 | 0 4 7 | 2 5 7 10 | 10:0 4 7 9 | 0 2 5 6 7 9 10 11 | 7:0 2 3 4 5 7 10 11 | '' | 2 5 9 | 311 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 4 6 7 8 9 | 0 4 7 | 0 2 8 | 8:0 4 6 | 0 2 3 4 6 7 8 9 | 8:0 1 4 6 7 8 10 11 | '' | 0 | 315 |
0 1 2 4 5 6 7 10 | 0 4 7 | 0 6 10 | 6:0 4 6 | 0 1 2 4 5 6 7 10 | 6:0 1 4 6 7 8 10 11 | '' | 10 | 315 |
0 1 4 6 7 8 10 11 | 0 4 7 | 0 4 6 | 0:0 4 6 | 0 1 4 6 7 8 10 11 | 0:0 1 4 6 7 8 10 11 | '' | 4 | 315 |
0 3 5 6 7 9 10 11 | 0 4 7 | 3 5 11 | 11:0 4 6 | 0 3 5 6 7 9 10 11 | 11:0 1 4 6 7 8 10 11 | '' | 3 | 315 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 5 7 8 11 | 0 4 7 | 0 1 4 8 | 1:0 3 7 11 | 0 1 3 4 5 7 8 11 | 1:0 2 3 4 6 7 10 11 | '' | 0 4 8 | 316 |
0 1 3 4 7 8 9 11 | 0 4 7 | 0 4 8 9 | 9:0 3 7 11 | 0 1 3 4 7 8 9 11 | 9:0 2 3 4 6 7 10 11 | '' | 0 4 8 | 316 |
0 3 4 5 7 8 9 11 | 0 4 7 | 0 4 5 8 | 5:0 3 7 11 | 0 3 4 5 7 8 9 11 | 5:0 2 3 4 6 7 10 11 | '' | 0 4 8 | 316 |
0 2 3 4 6 7 10 11 | 0 4 7 | 0 3 7 11 | 0:0 3 7 11 | 0 2 3 4 6 7 10 11 | 0:0 2 3 4 6 7 10 11 | '' | 3 7 11 | 316 |
0 2 3 6 7 8 10 11 | 0 4 7 | 3 7 8 11 | 8:0 3 7 11 | 0 2 3 6 7 8 10 11 | 8:0 2 3 4 6 7 10 11 | '' | 3 7 11 | 316 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 5 7 8 9 | 0 4 7 | 0 1 5 8 9 | 5:0 3 4 7 8 | 0 1 3 4 5 7 8 9 | 5:0 2 3 4 7 8 10 11 | '' | 0 1 4 5 8 9 | 318 |
0 1 2 3 4 5 7 8 9 | 0 4 7 | 0 1 5 8 9 | 5:0 3 4 7 8 | 0 1 3 4 5 7 8 9 | 5:0 2 3 4 7 8 10 11 | 2 | 0 1 4 5 8 9 | 318 |
0 1 2 3 4 5 6 9 10 | 0 4 7 | 2 5 6 9 10 | 2:0 3 4 7 8 | 0 1 2 4 5 6 9 10 | 2:0 2 3 4 7 8 10 11 | 3 | 1 2 5 6 9 10 | 318 |
0 2 3 4 6 7 8 11 | 0 4 7 | 0 4 7 8 11 | 4:0 3 4 7 8 | 0 2 3 4 6 7 8 11 | 4:0 2 3 4 7 8 10 11 | '' | 0 3 4 7 8 11 | 318 |
0 1 2 3 4 6 7 8 11 | 0 4 7 | 0 4 7 8 11 | 4:0 3 4 7 8 | 0 2 3 4 6 7 8 11 | 4:0 2 3 4 7 8 10 11 | 1 | 0 3 4 7 8 11 | 318 |
0 2 3 4 5 6 7 8 11 | 0 4 7 | 0 4 7 8 11 | 4:0 3 4 7 8 | 0 2 3 4 6 7 8 11 | 4:0 2 3 4 7 8 10 11 | 5 | 0 3 4 7 8 11 | 318 |
0 1 4 5 7 8 9 11 | 0 4 7 | 0 1 4 5 9 | 9:0 3 4 7 8 | 0 1 4 5 7 8 9 11 | 9:0 2 3 4 7 8 10 11 | '' | 0 1 4 5 8 9 | 318 |
0 1 4 5 6 7 8 9 11 | 0 4 7 | 0 1 4 5 9 | 9:0 3 4 7 8 | 0 1 4 5 7 8 9 11 | 9:0 2 3 4 7 8 10 11 | 6 | 0 1 4 5 8 9 | 318 |
0 1 4 5 7 8 9 10 11 | 0 4 7 | 0 1 4 5 9 | 9:0 3 4 7 8 | 0 1 4 5 7 8 9 11 | 9:0 2 3 4 7 8 10 11 | 10 | 0 1 4 5 8 9 | 318 |
0 1 2 3 5 6 7 10 11 | 0 4 7 | 3 6 7 10 11 | 3:0 3 4 7 8 | 1 2 3 5 6 7 10 11 | 3:0 2 3 4 7 8 10 11 | 0 | 2 3 6 7 10 11 | 318 |
0 2 3 4 7 8 10 11 | 0 4 7 | 0 3 4 7 8 | 0:0 3 4 7 8 | 0 2 3 4 7 8 10 11 | 0:0 2 3 4 7 8 10 11 | '' | 0 3 4 7 8 11 | 318 |
0 1 2 3 4 7 8 10 11 | 0 4 7 | 0 3 4 7 8 | 0:0 3 4 7 8 | 0 2 3 4 7 8 10 11 | 0:0 2 3 4 7 8 10 11 | 1 | 0 3 4 7 8 11 | 318 |
0 2 3 4 7 8 9 10 11 | 0 4 7 | 0 3 4 7 8 | 0:0 3 4 7 8 | 0 2 3 4 7 8 10 11 | 0:0 2 3 4 7 8 10 11 | 9 | 0 3 4 7 8 11 | 318 |
0 3 4 6 7 8 10 11 | 0 4 7 | 0 3 4 8 11 | 8:0 3 4 7 8 | 0 3 4 6 7 8 10 11 | 8:0 2 3 4 7 8 10 11 | '' | 0 3 4 7 8 11 | 318 |
0 3 4 5 6 7 8 10 11 | 0 4 7 | 0 3 4 8 11 | 8:0 3 4 7 8 | 0 3 4 6 7 8 10 11 | 8:0 2 3 4 7 8 10 11 | 5 | 0 3 4 7 8 11 | 318 |
0 3 4 6 7 8 9 10 11 | 0 4 7 | 0 3 4 8 11 | 8:0 3 4 7 8 | 0 3 4 6 7 8 10 11 | 8:0 2 3 4 7 8 10 11 | 9 | 0 3 4 7 8 11 | 318 |
0 1 2 3 6 7 9 10 11 | 0 4 7 | 2 3 6 7 11 | 11:0 3 4 7 8 | 1 2 3 6 7 9 10 11 | 11:0 2 3 4 7 8 10 11 | 0 | 2 3 6 7 10 11 | 318 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 4 5 7 8 10 | 0 4 7 | 0 1 10 | 10:0 2 3 | 0 1 2 4 5 7 8 10 | 1:0 1 3 4 6 7 9 11 | '' | 5 | 320 |
0 2 3 4 6 7 9 10 | 0 4 7 | 0 2 3 | 0:0 2 3 | 0 2 3 4 6 7 9 10 | 0:0 2 3 4 6 7 9 10 | '' | 7 | 320 |
0 1 3 5 6 7 9 10 | 0 4 7 | 3 5 6 | 3:0 2 3 | 0 1 3 5 6 7 9 10 | 3:0 2 3 4 6 7 9 10 | '' | 10 | 320 |
0 1 3 4 6 7 9 11 | 0 4 7 | 0 9 11 | 9:0 2 3 | 0 1 3 4 6 7 9 11 | 0:0 1 3 4 6 7 9 11 | '' | 4 | 320 |
0 2 3 5 7 8 9 11 | 0 4 7 | 5 7 8 | 5:0 2 3 | 0 2 3 5 7 8 9 11 | 5:0 2 3 4 6 7 9 10 | '' | 0 | 320 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 5 7 8 10 | 0 4 7 | 0 1 3 8 | 8:0 4 5 7 | 0 1 3 4 5 7 8 10 | 1:0 2 3 4 6 7 9 11 | '' | 0 3 7 8 | 321 |
0 1 2 4 5 7 9 10 | 0 4 7 | 0 5 9 10 | 5:0 4 5 7 | 0 1 2 4 5 7 9 10 | 10:0 2 3 4 6 7 9 11 | '' | 0 4 5 9 | 321 |
0 2 3 5 6 7 9 10 | 0 4 7 | 2 3 5 10 | 10:0 4 5 7 | 0 2 3 5 6 7 9 10 | 3:0 2 3 4 6 7 9 11 | '' | 2 5 9 10 | 321 |
0 2 3 4 6 7 9 11 | 0 4 7 | 0 2 7 11 | 7:0 4 5 7 | 0 2 3 4 6 7 9 11 | 0:0 2 3 4 6 7 9 11 | '' | 2 6 7 11 | 321 |
0 2 4 5 7 8 9 11 | 0 4 7 | 0 4 5 7 | 0:0 4 5 7 | 0 2 4 5 7 8 9 11 | 5:0 2 3 4 6 7 9 11 | '' | 0 4 7 11 | 321 |
0 2 3 5 7 8 10 11 | 0 4 7 | 3 7 8 10 | 3:0 4 5 7 | 0 2 3 5 7 8 10 11 | 8:0 2 3 4 6 7 9 11 | '' | 2 3 7 10 | 321 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 6 7 8 10 | 0 4 7 | 0 3 6 8 | 8:0 4 7 10 | 0 1 3 4 6 7 8 10 | 3:0 1 3 4 5 7 9 10 | '' | 0 3 7 10 | 323 |
0 1 2 3 4 6 7 8 10 | 0 4 7 | 0 3 6 8 | 8:0 4 7 10 | 0 1 3 4 6 7 8 10 | 3:0 1 3 4 5 7 9 10 | 2 | 0 3 7 10 | 323 |
0 1 3 4 5 7 9 10 | 0 4 7 | 0 3 5 9 | 5:0 4 7 10 | 0 1 3 4 5 7 9 10 | 0:0 1 3 4 5 7 9 10 | '' | 0 4 7 9 | 323 |
0 1 3 4 5 7 9 10 11 | 0 4 7 | 0 3 5 9 | 5:0 4 7 10 | 0 1 3 4 5 7 9 10 | 0:0 1 3 4 5 7 9 10 | 11 | 0 4 7 9 | 323 |
0 1 2 4 6 7 9 10 | 0 4 7 | 0 2 6 9 | 2:0 4 7 10 | 0 1 2 4 6 7 9 10 | 9:0 1 3 4 5 7 9 10 | '' | 1 4 6 9 | 323 |
0 1 2 4 6 7 8 9 10 | 0 4 7 | 0 2 6 9 | 2:0 4 7 10 | 0 1 2 4 6 7 9 10 | 9:0 1 3 4 5 7 9 10 | 8 | 1 4 6 9 | 323 |
0 2 3 5 6 7 9 11 | 0 4 7 | 2 5 7 11 | 7:0 4 7 10 | 0 2 3 5 6 7 9 11 | 2:0 1 3 4 5 7 9 10 | '' | 2 6 9 11 | 323 |
0 1 2 3 5 6 7 9 11 | 0 4 7 | 2 5 7 11 | 7:0 4 7 10 | 0 2 3 5 6 7 9 11 | 2:0 1 3 4 5 7 9 10 | 1 | 2 6 9 11 | 323 |
0 1 3 5 6 7 8 9 11 | 0 4 7 | 1 5 8 11 | 1:0 4 7 10 | 0 1 3 5 6 8 9 11 | 8:0 1 3 4 5 7 9 10 | 7 | 0 3 5 8 | 323 |
0 2 4 5 7 8 10 11 | 0 4 7 | 0 4 7 10 | 0:0 4 7 10 | 0 2 4 5 7 8 10 11 | 7:0 1 3 4 5 7 9 10 | '' | 2 4 7 11 | 323 |
0 2 4 5 6 7 8 10 11 | 0 4 7 | 0 4 7 10 | 0:0 4 7 10 | 0 2 4 5 7 8 10 11 | 7:0 1 3 4 5 7 9 10 | 6 | 2 4 7 11 | 323 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 6 7 9 10 | 0 4 7 | 0 3 6 9 | 0:0 3 6 9 | 0 1 3 4 6 7 9 10 | 0:0 1 3 4 6 7 9 10 | '' | 1 4 7 10 | 324 |
0 2 3 5 6 8 9 11 | 0 4 7 | 2 5 8 11 | 2:0 3 6 9 | 0 2 3 5 6 8 9 11 | 2:0 1 3 4 6 7 9 10 | '' | 0 3 6 9 | 324 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 2 3 4 5 6 7 8 9 | 0 4 7 | 0 2 5 8 | 5:0 3 7 9 | 0 2 3 4 5 6 7 8 9 | 5:0 1 2 3 4 7 9 10 11 | '' | 0 9 | 327 |
0 1 2 3 4 5 6 7 10 | 0 4 7 | 0 3 6 10 | 3:0 3 7 9 | 0 1 2 3 4 5 6 7 10 | 3:0 1 2 3 4 7 9 10 11 | '' | 7 10 | 327 |
0 1 2 3 4 7 9 10 11 | 0 4 7 | 0 3 7 9 | 0:0 3 7 9 | 0 1 2 3 4 7 9 10 11 | 0:0 1 2 3 4 7 9 10 11 | '' | 4 7 | 327 |
0 1 2 5 7 8 9 10 11 | 0 4 7 | 1 5 7 10 | 10:0 3 7 9 | 0 1 2 5 7 8 9 10 11 | 10:0 1 2 3 4 7 9 10 11 | '' | 2 5 | 327 |
0 1 4 6 7 8 9 10 11 | 0 4 7 | 0 4 6 9 | 9:0 3 7 9 | 0 1 4 6 7 8 9 10 11 | 9:0 1 2 3 4 7 9 10 11 | '' | 1 4 | 327 |
0 3 5 6 7 8 9 10 11 | 0 4 7 | 3 5 8 11 | 8:0 3 7 9 | 0 3 5 6 7 8 9 10 11 | 8:0 1 2 3 4 7 9 10 11 | '' | 0 3 | 327 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 4 5 6 7 8 9 10 | 0 4 7 | 0 1 5 6 9 | 5:0 1 4 7 8 | 0 1 4 5 6 7 8 9 10 | 6:0 1 2 3 4 6 7 10 11 | '' | 0 1 4 5 9 | 328 |
0 1 2 3 4 5 7 8 11 | 0 4 7 | 0 1 4 7 8 | 0:0 1 4 7 8 | 0 1 2 3 4 5 7 8 11 | 1:0 1 2 3 4 6 7 10 11 | '' | 0 4 7 8 11 | 328 |
0 3 4 5 6 7 8 9 11 | 0 4 7 | 0 4 5 8 11 | 4:0 1 4 7 8 | 0 3 4 5 6 7 8 9 11 | 5:0 1 2 3 4 6 7 10 11 | '' | 0 3 4 8 11 | 328 |
0 1 2 3 4 6 7 10 11 | 0 4 7 | 0 3 6 7 11 | 11:0 1 4 7 8 | 0 1 2 3 4 6 7 10 11 | 0:0 1 2 3 4 6 7 10 11 | '' | 3 6 7 10 11 | 328 |
0 1 3 4 7 8 9 10 11 | 0 4 7 | 0 3 4 8 9 | 8:0 1 4 7 8 | 0 1 3 4 7 8 9 10 11 | 9:0 1 2 3 4 6 7 10 11 | '' | 0 3 4 7 8 | 328 |
0 2 3 6 7 8 9 10 11 | 0 4 7 | 2 3 7 8 11 | 7:0 1 4 7 8 | 0 2 3 6 7 8 9 10 11 | 8:0 1 2 3 4 6 7 10 11 | '' | 2 3 6 7 11 | 328 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 5 7 8 10 | 0 4 7 | 0 1 3 8 10 | 8:0 2 4 5 7 | 0 1 2 3 4 5 7 8 10 | 1:0 1 2 3 4 6 7 9 11 | '' | 0 3 5 7 8 10 | 332 |
0 2 3 4 5 6 7 9 10 | 0 4 7 | 0 2 3 5 10 | 10:0 2 4 5 7 | 0 2 3 4 5 6 7 9 10 | 3:0 1 2 3 4 6 7 9 11 | '' | 0 2 5 7 9 10 | 332 |
0 1 3 5 6 7 8 9 10 | 0 4 7 | 1 3 5 6 8 | 1:0 2 4 5 7 | 0 1 3 5 6 7 8 9 10 | 6:0 1 2 3 4 6 7 9 11 | '' | 0 1 3 5 8 10 | 332 |
0 1 2 3 4 6 7 9 11 | 0 4 7 | 0 2 7 9 11 | 7:0 2 4 5 7 | 0 1 2 3 4 6 7 9 11 | 0:0 1 2 3 4 6 7 9 11 | '' | 2 4 6 7 9 11 | 332 |
0 2 4 5 6 7 8 9 11 | 0 4 7 | 0 2 4 5 7 | 0:0 2 4 5 7 | 0 2 4 5 6 7 8 9 11 | 5:0 1 2 3 4 6 7 9 11 | '' | 0 2 4 7 9 11 | 332 |
0 1 2 4 5 7 9 10 11 | 0 4 7 | 0 5 7 9 10 | 5:0 2 4 5 7 | 0 1 2 4 5 7 9 10 11 | 10:0 1 2 3 4 6 7 9 11 | '' | 0 2 4 5 7 9 | 332 |
0 2 3 5 7 8 9 10 11 | 0 4 7 | 3 5 7 8 10 | 3:0 2 4 5 7 | 0 2 3 5 7 8 9 10 11 | 8:0 1 2 3 4 6 7 9 11 | '' | 0 2 3 5 7 10 | 332 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 5 6 7 8 10 | 0 4 7 | 0 1 3 6 8 | 8:0 4 5 7 10 | 0 1 3 4 5 6 7 8 10 | 3:0 1 2 3 4 5 7 9 10 | '' | 0 1 3 7 8 10 | 333 |
0 1 2 3 4 5 7 9 10 | 0 4 7 | 0 3 5 9 10 | 5:0 4 5 7 10 | 0 1 2 3 4 5 7 9 10 | 0:0 1 2 3 4 5 7 9 10 | '' | 0 4 5 7 9 10 | 333 |
0 2 3 5 6 7 8 9 10 | 0 4 7 | 2 3 5 8 10 | 10:0 4 5 7 10 | 0 2 3 5 6 7 8 9 10 | 5:0 1 2 3 4 5 7 9 10 | '' | 0 2 3 5 9 10 | 333 |
0 2 3 4 5 6 7 9 11 | 0 4 7 | 0 2 5 7 11 | 7:0 4 5 7 10 | 0 2 3 4 5 6 7 9 11 | 2:0 1 2 3 4 5 7 9 10 | '' | 0 2 6 7 9 11 | 333 |
0 1 2 3 5 7 8 10 11 | 0 4 7 | 1 3 7 8 10 | 3:0 4 5 7 10 | 0 1 2 3 5 7 8 10 11 | 10:0 1 2 3 4 5 7 9 10 | '' | 2 3 5 7 8 10 | 333 |
0 1 2 4 6 7 9 10 11 | 0 4 7 | 0 2 6 7 9 | 2:0 4 5 7 10 | 0 1 2 4 6 7 9 10 11 | 9:0 1 2 3 4 5 7 9 10 | '' | 1 2 4 6 7 9 | 333 |
0 2 4 5 7 8 9 10 11 | 0 4 7 | 0 4 5 7 10 | 0:0 4 5 7 10 | 0 2 4 5 7 8 9 10 11 | 7:0 1 2 3 4 5 7 9 10 | '' | 0 2 4 5 7 11 | 333 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 4 5 6 7 8 9 | 0 4 7 | 0 1 2 5 9 | 2:0 3 7 10 11 | 0 1 2 4 5 6 7 8 9 | 5:0 1 2 3 4 7 8 9 11 | '' | 0 1 4 5 9 | 334 |
0 1 3 4 5 6 7 8 11 | 0 4 7 | 0 1 4 8 11 | 1:0 3 7 10 11 | 0 1 3 4 5 6 7 8 11 | 4:0 1 2 3 4 7 8 9 11 | '' | 0 3 4 8 11 | 334 |
0 1 2 3 4 7 8 9 11 | 0 4 7 | 0 4 7 8 9 | 9:0 3 7 10 11 | 0 1 2 3 4 7 8 9 11 | 0:0 1 2 3 4 7 8 9 11 | '' | 0 4 7 8 11 | 334 |
0 2 3 4 5 6 7 10 11 | 0 4 7 | 0 3 7 10 11 | 0:0 3 7 10 11 | 0 2 3 4 5 6 7 10 11 | 3:0 1 2 3 4 7 8 9 11 | '' | 2 3 7 10 11 | 334 |
0 1 2 3 6 7 8 10 11 | 0 4 7 | 3 6 7 8 11 | 8:0 3 7 10 11 | 0 1 2 3 6 7 8 10 11 | 11:0 1 2 3 4 7 8 9 11 | '' | 3 6 7 10 11 | 334 |
0 3 4 5 7 8 9 10 11 | 0 4 7 | 0 3 4 5 8 | 5:0 3 7 10 11 | 0 3 4 5 7 8 9 10 11 | 8:0 1 2 3 4 7 8 9 11 | '' | 0 3 4 7 8 | 334 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 6 7 8 9 | 0 4 7 | 0 2 8 9 | 2:0 6 7 10 | 0 1 2 3 4 6 7 8 9 | 9:0 3 4 5 6 7 9 10 11 | '' | 0 4 9 | 335 |
0 1 2 3 6 7 8 9 10 | 0 4 7 | 2 3 6 8 | 8:0 6 7 10 | 0 1 2 3 6 7 8 9 10 | 3:0 3 4 5 6 7 9 10 11 | '' | 3 6 10 | 335 |
0 1 2 3 5 6 7 8 11 | 0 4 7 | 1 7 8 11 | 1:0 6 7 10 | 0 1 2 3 5 6 7 8 11 | 8:0 3 4 5 6 7 9 10 11 | '' | 3 8 11 | 335 |
0 1 2 4 5 6 7 10 11 | 0 4 7 | 0 6 7 10 | 0:0 6 7 10 | 0 1 2 4 5 6 7 10 11 | 7:0 3 4 5 6 7 9 10 11 | '' | 2 7 10 | 335 |
0 1 4 5 6 7 8 10 11 | 0 4 7 | 0 1 4 6 | 6:0 6 7 10 | 0 1 4 5 6 7 8 10 11 | 1:0 3 4 5 6 7 9 10 11 | '' | 1 4 8 | 335 |
0 3 4 5 6 7 9 10 11 | 0 4 7 | 0 3 5 11 | 5:0 6 7 10 | 0 3 4 5 6 7 9 10 11 | 0:0 3 4 5 6 7 9 10 11 | '' | 0 3 7 | 335 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 6 7 9 10 | 0 4 7 | 0 2 3 6 9 | 2:0 1 4 7 10 | 0 1 2 3 4 6 7 9 10 | 3:0 1 3 4 6 7 9 10 11 | '' | 1 4 6 7 9 10 | 337 |
0 1 3 4 5 6 7 9 10 | 0 4 7 | 0 3 5 6 9 | 5:0 1 4 7 10 | 0 1 3 4 5 6 7 9 10 | 6:0 1 3 4 6 7 9 10 11 | '' | 0 1 4 7 9 10 | 337 |
0 1 3 4 6 7 8 9 10 | 0 4 7 | 0 3 6 8 9 | 8:0 1 4 7 10 | 0 1 3 4 6 7 8 9 10 | 9:0 1 3 4 6 7 9 10 11 | '' | 0 1 3 4 7 10 | 337 |
0 1 2 3 5 6 8 9 11 | 0 4 7 | 1 2 5 8 11 | 1:0 1 4 7 10 | 0 1 2 3 5 6 8 9 11 | 2:0 1 3 4 6 7 9 10 11 | '' | 0 3 5 6 8 9 | 337 |
0 2 3 5 6 7 8 9 11 | 0 4 7 | 2 5 7 8 11 | 7:0 1 4 7 10 | 0 2 3 5 6 7 8 9 11 | 8:0 1 3 4 6 7 9 10 11 | '' | 0 2 3 6 9 11 | 337 |
0 1 2 4 5 7 8 10 11 | 0 4 7 | 0 1 4 7 10 | 0:0 1 4 7 10 | 0 1 2 4 5 7 8 10 11 | 1:0 1 3 4 6 7 9 10 11 | '' | 2 4 5 7 8 11 | 337 |
0 1 3 4 6 7 9 10 11 | 0 4 7 | 0 3 6 9 11 | 11:0 1 4 7 10 | 0 1 3 4 6 7 9 10 11 | 0:0 1 3 4 6 7 9 10 11 | '' | 1 3 4 6 7 10 | 337 |
0 2 3 5 6 8 9 10 11 | 0 4 7 | 2 5 8 10 11 | 10:0 1 4 7 10 | 0 2 3 5 6 8 9 10 11 | 11:0 1 3 4 6 7 9 10 11 | '' | 0 2 3 5 6 9 | 337 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 4 5 6 7 8 10 | 0 4 7 | 0 1 6 10 | 6:0 4 6 7 | 0 1 2 4 5 6 7 8 10 | 1:0 1 3 4 5 6 7 9 11 | '' | 1 5 10 | 338 |
0 2 3 4 6 7 8 9 10 | 0 4 7 | 0 2 3 8 | 8:0 4 6 7 | 0 2 3 4 6 7 8 9 10 | 3:0 1 3 4 5 6 7 9 11 | '' | 0 3 7 | 338 |
0 1 3 4 5 6 7 9 11 | 0 4 7 | 0 5 9 11 | 5:0 4 6 7 | 0 1 3 4 5 6 7 9 11 | 0:0 1 3 4 5 6 7 9 11 | '' | 0 4 9 | 338 |
0 1 2 3 5 7 8 9 11 | 0 4 7 | 1 5 7 8 | 1:0 4 6 7 | 0 1 2 3 5 7 8 9 11 | 8:0 1 3 4 5 6 7 9 11 | '' | 0 5 8 | 338 |
0 1 2 4 6 7 8 10 11 | 0 4 7 | 0 4 6 7 | 0:0 4 6 7 | 0 1 2 4 6 7 8 10 11 | 7:0 1 3 4 5 6 7 9 11 | '' | 4 7 11 | 338 |
0 1 3 5 6 7 9 10 11 | 0 4 7 | 3 5 6 11 | 11:0 4 6 7 | 0 1 3 5 6 7 9 10 11 | 6:0 1 3 4 5 6 7 9 11 | '' | 3 6 10 | 338 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 5 6 7 8 10 | 0 4 7 | 1 3 6 8 10 | 6:0 2 4 7 9 | 0 1 2 3 5 6 7 8 10 | 3:0 2 3 4 5 7 9 10 11 | '' | 1 3 5 8 10 | 340 |
0 1 2 3 5 7 8 9 10 | 0 4 7 | 1 3 5 8 10 | 1:0 2 4 7 9 | 0 1 2 3 5 7 8 9 10 | 10:0 2 3 4 5 7 9 10 11 | '' | 0 3 5 8 10 | 340 |
0 2 3 4 5 7 8 9 10 | 0 4 7 | 0 3 5 8 10 | 8:0 2 4 7 9 | 0 2 3 4 5 7 8 9 10 | 5:0 2 3 4 5 7 9 10 11 | '' | 0 3 5 7 10 | 340 |
0 1 2 4 5 6 7 9 11 | 0 4 7 | 0 2 5 7 9 | 5:0 2 4 7 9 | 0 1 2 4 5 6 7 9 11 | 2:0 2 3 4 5 7 9 10 11 | '' | 0 2 4 7 9 | 340 |
0 1 2 4 6 7 8 9 11 | 0 4 7 | 0 2 4 7 9 | 0:0 2 4 7 9 | 0 1 2 4 6 7 8 9 11 | 9:0 2 3 4 5 7 9 10 11 | '' | 2 4 7 9 11 | 340 |
0 2 3 4 5 7 9 10 11 | 0 4 7 | 0 3 5 7 10 | 3:0 2 4 7 9 | 0 2 3 4 5 7 9 10 11 | 0:0 2 3 4 5 7 9 10 11 | '' | 0 2 5 7 10 | 340 |
0 2 4 5 6 7 9 10 11 | 0 4 7 | 0 2 5 7 10 | 10:0 2 4 7 9 | 0 2 4 5 6 7 9 10 11 | 7:0 2 3 4 5 7 9 10 11 | '' | 0 2 5 7 9 | 340 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 5 6 7 9 10 | 0 4 7 | 2 3 5 6 10 | 3:0 2 3 7 11 | 0 1 2 3 5 6 7 9 10 | 3:0 2 3 4 6 7 9 10 11 | '' | 2 5 6 9 10 | 341 |
0 1 2 4 5 7 8 9 10 | 0 4 7 | 0 1 5 9 10 | 10:0 2 3 7 11 | 0 1 2 4 5 7 8 9 10 | 10:0 2 3 4 6 7 9 10 11 | '' | 0 1 4 5 9 | 341 |
0 2 3 4 5 7 8 9 11 | 0 4 7 | 0 4 5 7 8 | 5:0 2 3 7 11 | 0 2 3 4 5 7 8 9 11 | 5:0 2 3 4 6 7 9 10 11 | '' | 0 4 7 8 11 | 341 |
0 1 3 4 6 7 8 9 11 | 0 4 7 | 0 4 8 9 11 | 9:0 2 3 7 11 | 0 1 3 4 6 7 8 9 11 | 9:0 2 3 4 6 7 9 10 11 | '' | 0 3 4 8 11 | 341 |
0 1 3 4 5 7 8 10 11 | 0 4 7 | 0 1 3 4 8 | 1:0 2 3 7 11 | 0 1 3 4 5 7 8 10 11 | 1:0 2 3 4 6 7 9 10 11 | '' | 0 3 4 7 8 | 341 |
0 2 3 5 6 7 8 10 11 | 0 4 7 | 3 7 8 10 11 | 8:0 2 3 7 11 | 0 2 3 5 6 7 8 10 11 | 8:0 2 3 4 6 7 9 10 11 | '' | 2 3 7 10 11 | 341 |
0 2 3 4 6 7 9 10 11 | 0 4 7 | 0 2 3 7 11 | 0:0 2 3 7 11 | 0 2 3 4 6 7 9 10 11 | 0:0 2 3 4 6 7 9 10 11 | '' | 2 3 6 7 11 | 341 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 4 5 6 7 9 10 | 0 4 7 | 0 2 5 6 9 10 | 2:0 3 4 7 8 10 | 0 1 2 4 5 6 7 9 10 | 2:0 2 3 4 5 7 8 10 11 | '' | 0 1 2 4 5 6 9 10 | 342 |
0 1 3 4 5 7 8 9 10 | 0 4 7 | 0 1 3 5 8 9 | 5:0 3 4 7 8 10 | 0 1 3 4 5 7 8 9 10 | 5:0 2 3 4 5 7 8 10 11 | '' | 0 1 3 4 5 7 8 9 | 342 |
0 1 2 4 5 7 8 9 11 | 0 4 7 | 0 1 4 5 7 9 | 9:0 3 4 7 8 10 | 0 1 2 4 5 7 8 9 11 | 9:0 2 3 4 5 7 8 10 11 | '' | 0 1 4 5 7 8 9 11 | 342 |
0 2 3 4 6 7 8 9 11 | 0 4 7 | 0 2 4 7 8 11 | 4:0 3 4 7 8 10 | 0 2 3 4 6 7 8 9 11 | 4:0 2 3 4 5 7 8 10 11 | '' | 0 2 3 4 6 7 8 11 | 342 |
0 2 3 4 5 7 8 10 11 | 0 4 7 | 0 3 4 7 8 10 | 0:0 3 4 7 8 10 | 0 2 3 4 5 7 8 10 11 | 0:0 2 3 4 5 7 8 10 11 | '' | 0 2 3 4 7 8 10 11 | 342 |
0 1 3 4 6 7 8 10 11 | 0 4 7 | 0 3 4 6 8 11 | 8:0 3 4 7 8 10 | 0 1 3 4 6 7 8 10 11 | 8:0 2 3 4 5 7 8 10 11 | '' | 0 3 4 6 7 8 10 11 | 342 |
0 2 3 5 6 7 9 10 11 | 0 4 7 | 2 3 5 7 10 11 | 7:0 3 4 7 8 10 | 0 2 3 5 6 7 9 10 11 | 7:0 2 3 4 5 7 8 10 11 | '' | 2 3 5 6 7 9 10 11 | 342 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 3 4 5 7 8 9 11 | 0 4 7 | 0 1 4 5 8 9 | 1:0 3 4 7 8 11 | 0 1 3 4 5 7 8 9 11 | 1:0 2 3 4 6 7 8 10 11 | '' | 0 1 4 5 8 9 | 343 |
0 2 3 4 6 7 8 10 11 | 0 4 7 | 0 3 4 7 8 11 | 0:0 3 4 7 8 11 | 0 2 3 4 6 7 8 10 11 | 0:0 2 3 4 6 7 8 10 11 | '' | 0 3 4 7 8 11 | 343 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 5 6 7 8 9 | 0 4 7 | 0 1 2 5 8 9 | 1:0 1 4 7 8 11 | 0 1 2 3 4 5 6 7 8 9 | 5:0 1 2 3 4 7 8 9 10 11 | '' | 0 1 4 5 8 9 | 344 |
0 1 2 3 4 5 6 7 8 11 | 0 4 7 | 0 1 4 7 8 11 | 0:0 1 4 7 8 11 | 0 1 2 3 4 5 6 7 8 11 | 4:0 1 2 3 4 7 8 9 10 11 | '' | 0 3 4 7 8 11 | 344 |
0 1 2 3 4 5 6 7 10 11 | 0 4 7 | 0 3 6 7 10 11 | 3:0 3 4 7 8 9 | 0 1 2 3 4 5 6 7 10 11 | 3:0 1 2 3 4 7 8 9 10 11 | '' | 2 3 6 7 10 11 | 344 |
0 1 2 3 4 5 6 9 10 11 | 0 4 7 | 2 5 6 9 10 11 | 2:0 3 4 7 8 9 | 0 1 2 3 4 5 6 9 10 11 | 2:0 1 2 3 4 7 8 9 10 11 | '' | 1 2 5 6 9 10 | 344 |
0 1 2 3 4 5 8 9 10 11 | 0 4 7 | 1 4 5 8 9 10 | 1:0 3 4 7 8 9 | 0 1 2 3 4 5 8 9 10 11 | 1:0 1 2 3 4 7 8 9 10 11 | '' | 0 1 4 5 8 9 | 344 |
0 1 2 3 4 7 8 9 10 11 | 0 4 7 | 0 3 4 7 8 9 | 0:0 3 4 7 8 9 | 0 1 2 3 4 7 8 9 10 11 | 0:0 1 2 3 4 7 8 9 10 11 | '' | 0 3 4 7 8 11 | 344 |
0 1 2 3 6 7 8 9 10 11 | 0 4 7 | 2 3 6 7 8 11 | 7:0 1 4 7 8 11 | 0 1 2 3 6 7 8 9 10 11 | 11:0 1 2 3 4 7 8 9 10 11 | '' | 2 3 6 7 10 11 | 344 |
0 1 2 5 6 7 8 9 10 11 | 0 4 7 | 1 2 5 6 7 10 | 6:0 1 4 7 8 11 | 0 1 2 5 6 7 8 9 10 11 | 10:0 1 2 3 4 7 8 9 10 11 | '' | 1 2 5 6 9 10 | 344 |
0 1 4 5 6 7 8 9 10 11 | 0 4 7 | 0 1 4 5 6 9 | 5:0 1 4 7 8 11 | 0 1 4 5 6 7 8 9 10 11 | 9:0 1 2 3 4 7 8 9 10 11 | '' | 0 1 4 5 8 9 | 344 |
0 3 4 5 6 7 8 9 10 11 | 0 4 7 | 0 3 4 5 8 11 | 4:0 1 4 7 8 11 | 0 3 4 5 6 7 8 9 10 11 | 8:0 1 2 3 4 7 8 9 10 11 | '' | 0 3 4 7 8 11 | 344 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 5 6 7 8 10 | 0 4 7 | 0 1 3 6 8 10 | 8:0 2 4 5 7 10 | 0 1 2 3 4 5 6 7 8 10 | 3:0 1 2 3 4 5 7 9 10 11 | '' | 0 1 3 5 7 8 10 | 345 |
0 2 3 4 5 6 7 8 9 10 | 0 4 7 | 0 2 3 5 8 10 | 10:0 2 4 5 7 10 | 0 2 3 4 5 6 7 8 9 10 | 5:0 1 2 3 4 5 7 9 10 11 | '' | 0 2 3 5 7 9 10 | 345 |
0 1 2 3 4 5 6 7 9 11 | 0 4 7 | 0 2 5 7 9 11 | 7:0 2 4 5 7 10 | 0 1 2 3 4 5 6 7 9 11 | 2:0 1 2 3 4 5 7 9 10 11 | '' | 0 2 4 6 7 9 11 | 345 |
0 1 2 3 4 5 6 8 10 11 | 0 4 7 | 1 4 6 8 10 11 | 6:0 2 4 5 7 10 | 0 1 2 3 4 5 6 8 10 11 | 1:0 1 2 3 4 5 7 9 10 11 | '' | 1 3 5 6 8 10 11 | 345 |
0 1 2 3 4 5 7 9 10 11 | 0 4 7 | 0 3 5 7 9 10 | 5:0 2 4 5 7 10 | 0 1 2 3 4 5 7 9 10 11 | 0:0 1 2 3 4 5 7 9 10 11 | '' | 0 2 4 5 7 9 10 | 345 |
0 1 2 3 4 6 8 9 10 11 | 0 4 7 | 2 4 6 8 9 11 | 4:0 2 4 5 7 10 | 0 1 2 3 4 6 8 9 10 11 | 11:0 1 2 3 4 5 7 9 10 11 | '' | 1 3 4 6 8 9 11 | 345 |
0 1 2 3 5 7 8 9 10 11 | 0 4 7 | 1 3 5 7 8 10 | 3:0 2 4 5 7 10 | 0 1 2 3 5 7 8 9 10 11 | 10:0 1 2 3 4 5 7 9 10 11 | '' | 0 2 3 5 7 8 10 | 345 |
0 1 2 4 6 7 8 9 10 11 | 0 4 7 | 0 2 4 6 7 9 | 2:0 2 4 5 7 10 | 0 1 2 4 6 7 8 9 10 11 | 9:0 1 2 3 4 5 7 9 10 11 | '' | 1 2 4 6 7 9 11 | 345 |
0 1 3 5 6 7 8 9 10 11 | 0 4 7 | 1 3 5 6 8 11 | 1:0 2 4 5 7 10 | 0 1 3 5 6 7 8 9 10 11 | 8:0 1 2 3 4 5 7 9 10 11 | '' | 0 1 3 5 6 8 10 | 345 |
0 2 4 5 6 7 8 9 10 11 | 0 4 7 | 0 2 4 5 7 10 | 0:0 2 4 5 7 10 | 0 2 4 5 6 7 8 9 10 11 | 7:0 1 2 3 4 5 7 9 10 11 | '' | 0 2 4 5 7 9 11 | 345 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 5 6 7 9 10 | 0 4 7 | 0 2 3 5 6 9 10 | 2:0 1 3 4 7 8 10 | 0 1 2 3 4 5 6 7 9 10 | 3:0 1 2 3 4 6 7 9 10 11 | '' | 0 1 2 4 5 6 7 9 10 | 346 |
0 1 3 4 5 6 7 8 9 10 | 0 4 7 | 0 1 3 5 6 8 9 | 5:0 1 3 4 7 8 10 | 0 1 3 4 5 6 7 8 9 10 | 6:0 1 2 3 4 6 7 9 10 11 | '' | 0 1 3 4 5 7 8 9 10 | 346 |
0 1 2 3 4 5 6 8 9 11 | 0 4 7 | 1 2 4 5 8 9 11 | 1:0 1 3 4 7 8 10 | 0 1 2 3 4 5 6 8 9 11 | 2:0 1 2 3 4 6 7 9 10 11 | '' | 0 1 3 4 5 6 8 9 11 | 346 |
0 2 3 4 5 6 7 8 9 11 | 0 4 7 | 0 2 4 5 7 8 11 | 4:0 1 3 4 7 8 10 | 0 2 3 4 5 6 7 8 9 11 | 5:0 1 2 3 4 6 7 9 10 11 | '' | 0 2 3 4 6 7 8 9 11 | 346 |
0 1 2 3 4 5 7 8 10 11 | 0 4 7 | 0 1 3 4 7 8 10 | 0:0 1 3 4 7 8 10 | 0 1 2 3 4 5 7 8 10 11 | 1:0 1 2 3 4 6 7 9 10 11 | '' | 0 2 3 4 5 7 8 10 11 | 346 |
0 1 2 3 4 6 7 9 10 11 | 0 4 7 | 0 2 3 6 7 9 11 | 11:0 1 3 4 7 8 10 | 0 1 2 3 4 6 7 9 10 11 | 0:0 1 2 3 4 6 7 9 10 11 | '' | 1 2 3 4 6 7 9 10 11 | 346 |
0 1 2 3 5 6 8 9 10 11 | 0 4 7 | 1 2 5 6 8 10 11 | 10:0 1 3 4 7 8 10 | 0 1 2 3 5 6 8 9 10 11 | 11:0 1 2 3 4 6 7 9 10 11 | '' | 0 1 2 3 5 6 8 9 10 | 346 |
0 1 2 4 5 7 8 9 10 11 | 0 4 7 | 0 1 4 5 7 9 10 | 9:0 1 3 4 7 8 10 | 0 1 2 4 5 7 8 9 10 11 | 10:0 1 2 3 4 6 7 9 10 11 | '' | 0 1 2 4 5 7 8 9 11 | 346 |
0 1 3 4 6 7 8 9 10 11 | 0 4 7 | 0 3 4 6 8 9 11 | 8:0 1 3 4 7 8 10 | 0 1 3 4 6 7 8 9 10 11 | 9:0 1 2 3 4 6 7 9 10 11 | '' | 0 1 3 4 6 7 8 10 11 | 346 |
0 2 3 5 6 7 8 9 10 11 | 0 4 7 | 2 3 5 7 8 10 11 | 7:0 1 3 4 7 8 10 | 0 2 3 5 6 7 8 9 10 11 | 8:0 1 2 3 4 6 7 9 10 11 | '' | 0 2 3 5 6 7 9 10 11 | 346 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 5 6 8 9 10 | 0 4 7 | 1 2 5 6 8 9 10 | 10:0 3 4 7 8 10 11 | 0 1 2 3 4 5 6 8 9 10 | 2:0 1 2 3 4 6 7 8 10 11 | '' | 0 1 2 5 6 8 9 10 | 347 |
0 1 2 4 5 6 7 8 9 10 | 0 4 7 | 0 1 2 5 6 9 10 | 2:0 3 4 7 8 10 11 | 0 1 2 4 5 6 7 8 9 10 | 6:0 1 2 3 4 6 7 8 10 11 | '' | 0 1 2 4 5 6 9 10 | 347 |
0 1 2 3 4 5 7 8 9 11 | 0 4 7 | 0 1 4 5 7 8 9 | 9:0 3 4 7 8 10 11 | 0 1 2 3 4 5 7 8 9 11 | 1:0 1 2 3 4 6 7 8 10 11 | '' | 0 1 4 5 7 8 9 11 | 347 |
0 1 3 4 5 6 7 8 9 11 | 0 4 7 | 0 1 4 5 8 9 11 | 1:0 3 4 7 8 10 11 | 0 1 3 4 5 6 7 8 9 11 | 5:0 1 2 3 4 6 7 8 10 11 | '' | 0 1 3 4 5 8 9 11 | 347 |
0 1 2 3 4 6 7 8 10 11 | 0 4 7 | 0 3 4 6 7 8 11 | 8:0 3 4 7 8 10 11 | 0 1 2 3 4 6 7 8 10 11 | 0:0 1 2 3 4 6 7 8 10 11 | '' | 0 3 4 6 7 8 10 11 | 347 |
0 2 3 4 5 6 7 8 10 11 | 0 4 7 | 0 3 4 7 8 10 11 | 0:0 3 4 7 8 10 11 | 0 2 3 4 5 6 7 8 10 11 | 4:0 1 2 3 4 6 7 8 10 11 | '' | 0 2 3 4 7 8 10 11 | 347 |
0 1 2 3 5 6 7 9 10 11 | 0 4 7 | 2 3 5 6 7 10 11 | 7:0 3 4 7 8 10 11 | 0 1 2 3 5 6 7 9 10 11 | 11:0 1 2 3 4 6 7 8 10 11 | '' | 2 3 5 6 7 9 10 11 | 347 |
0 1 2 4 5 6 8 9 10 11 | 0 4 7 | 1 2 4 5 6 9 10 | 6:0 3 4 7 8 10 11 | 0 1 2 4 5 6 8 9 10 11 | 10:0 1 2 3 4 6 7 8 10 11 | '' | 1 2 4 5 6 8 9 10 | 347 |
0 1 3 4 5 7 8 9 10 11 | 0 4 7 | 0 1 3 4 5 8 9 | 5:0 3 4 7 8 10 11 | 0 1 3 4 5 7 8 9 10 11 | 9:0 1 2 3 4 6 7 8 10 11 | '' | 0 1 3 4 5 7 8 9 | 347 |
0 2 3 4 6 7 8 9 10 11 | 0 4 7 | 0 2 3 4 7 8 11 | 4:0 3 4 7 8 10 11 | 0 2 3 4 6 7 8 9 10 11 | 8:0 1 2 3 4 6 7 8 10 11 | '' | 0 2 3 4 6 7 8 11 | 347 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 5 7 8 9 10 | 0 4 7 | 0 1 3 5 8 9 10 | 1:0 2 4 7 8 9 11 | 0 1 2 3 4 5 7 8 9 10 | 10:0 2 3 4 5 6 7 9 10 11 | '' | 0 1 3 4 5 7 8 9 10 | 348 |
0 1 2 3 5 6 7 8 9 10 | 0 4 7 | 1 2 3 5 6 8 10 | 6:0 2 4 7 8 9 11 | 0 1 2 3 5 6 7 8 9 10 | 3:0 2 3 4 5 6 7 9 10 11 | '' | 0 1 2 3 5 6 8 9 10 | 348 |
0 1 2 3 4 6 7 8 9 11 | 0 4 7 | 0 2 4 7 8 9 11 | 0:0 2 4 7 8 9 11 | 0 1 2 3 4 6 7 8 9 11 | 9:0 2 3 4 5 6 7 9 10 11 | '' | 0 2 3 4 6 7 8 9 11 | 348 |
0 1 2 4 5 6 7 8 9 11 | 0 4 7 | 0 1 2 4 5 7 9 | 5:0 2 4 7 8 9 11 | 0 1 2 4 5 6 7 8 9 11 | 2:0 2 3 4 5 6 7 9 10 11 | '' | 0 1 2 4 5 7 8 9 11 | 348 |
0 1 2 3 5 6 7 8 10 11 | 0 4 7 | 1 3 6 7 8 10 11 | 11:0 2 4 7 8 9 11 | 0 1 2 3 5 6 7 8 10 11 | 8:0 2 3 4 5 6 7 9 10 11 | '' | 1 2 3 5 6 7 8 10 11 | 348 |
0 1 3 4 5 6 7 8 10 11 | 0 4 7 | 0 1 3 4 6 8 11 | 4:0 2 4 7 8 9 11 | 0 1 3 4 5 6 7 8 10 11 | 1:0 2 3 4 5 6 7 9 10 11 | '' | 0 1 3 4 6 7 8 10 11 | 348 |
0 1 2 4 5 6 7 9 10 11 | 0 4 7 | 0 2 5 6 7 9 10 | 10:0 2 4 7 8 9 11 | 0 1 2 4 5 6 7 9 10 11 | 7:0 2 3 4 5 6 7 9 10 11 | '' | 0 1 2 4 5 6 7 9 10 | 348 |
0 2 3 4 5 6 7 9 10 11 | 0 4 7 | 0 2 3 5 7 10 11 | 3:0 2 4 7 8 9 11 | 0 2 3 4 5 6 7 9 10 11 | 0:0 2 3 4 5 6 7 9 10 11 | '' | 0 2 3 5 6 7 9 10 11 | 348 |
0 1 3 4 5 6 8 9 10 11 | 0 4 7 | 1 4 5 6 8 9 11 | 9:0 2 4 7 8 9 11 | 0 1 3 4 5 6 8 9 10 11 | 6:0 2 3 4 5 6 7 9 10 11 | '' | 0 1 3 4 5 6 8 9 11 | 348 |
0 2 3 4 5 7 8 9 10 11 | 0 4 7 | 0 3 4 5 7 8 10 | 8:0 2 4 7 8 9 11 | 0 2 3 4 5 7 8 9 10 11 | 5:0 2 3 4 5 6 7 9 10 11 | '' | 0 2 3 4 5 7 8 10 11 | 348 |
Chromaset | Cell(ct) | Generator(pcset) | Generator(root:pct1) | Generated(pcset) | Generated(root:pct1) | Missing | Dupli. | Gen.(ms idx) |
0 1 2 3 4 6 7 8 9 10 | 0 4 7 | 0 2 3 6 8 9 | 2:0 1 4 6 7 10 | 0 1 2 3 4 6 7 8 9 10 | 3:0 1 3 4 5 6 7 9 10 11 | '' | 0 1 3 4 6 7 9 10 | 349 |
0 1 2 3 5 6 7 8 9 11 | 0 4 7 | 1 2 5 7 8 11 | 1:0 1 4 6 7 10 | 0 1 2 3 5 6 7 8 9 11 | 2:0 1 3 4 5 6 7 9 10 11 | '' | 0 2 3 5 6 8 9 11 | 349 |
0 1 2 4 5 6 7 8 10 11 | 0 4 7 | 0 1 4 6 7 10 | 0:0 1 4 6 7 10 | 0 1 2 4 5 6 7 8 10 11 | 1:0 1 3 4 5 6 7 9 10 11 | '' | 1 2 4 5 7 8 10 11 | 349 |
0 1 3 4 5 6 7 9 10 11 | 0 4 7 | 0 3 5 6 9 11 | 5:0 1 4 6 7 10 | 0 1 3 4 5 6 7 9 10 11 | 0:0 1 3 4 5 6 7 9 10 11 | '' | 0 1 3 4 6 7 9 10 | 349 |
0 2 3 4 5 6 8 9 10 11 | 0 4 7 | 2 4 5 8 10 11 | 4:0 1 4 6 7 10 | 0 2 3 4 5 6 8 9 10 11 | 5:0 1 3 4 5 6 7 9 10 11 | '' | 0 2 3 5 6 8 9 11 | 349 |