Chord Type | | Roots |
Scale Degrees: 122356 | | |
0 1 2 4 7 8 = all-tri hex | | | 4 = 4: 0 |
| | |
11th chords = diamorphic scales no 6th (Scale Degrees: 123457) | | |
0 1 3 6 7 11 = mM#11b9, all-tri hex | | | 3 = 3: 0 |
| | |
13th chords no 11th = diamorphic scales no 4th (Scale Degrees: 123567) | | |
0 3 4 8 9 10 = M#13#5#9 no 11th, all-tri hex | | | 0 = 0: 0 |
| | |
Scale Degrees: 1223356 | | |
0 1 2 3 4 7 8 | | | 4 = 4: 0 |
| | |
Scale Degrees: 1223456 | | |
0 1 2 4 5 7 8 | | | 4 = 4: 0 |
0 1 2 4 6 7 8 | | | 4 = 4: 0 |
| | |
Scale Degrees: 1223457 | | |
0 1 2 3 6 7 11 | | | 3 = 3: 0 |
0 1 3 4 6 7 11 | | | 3 = 3: 0 |
| | |
Scale Degrees: 1223566 | | |
0 1 2 4 7 8 9 | | | 4 = 4: 0 |
| | |
Scale Degrees: 1223567 | | |
0 1 2 4 7 8 10 | | | 4 = 4: 0 |
0 1 2 4 7 8 11 | | | 4 = 4: 0 |
| | |
Scale Degrees: 1224567 | | |
0 1 2 6 7 8 10 = Jalarnavam | | | 10 = 10: 0 |
| | |
Scale Degrees: 1234456 | | |
0 1 4 5 6 7 9 | | | 9 = 9: 0 |
| | |
Scale Degrees: 1234457 | | |
0 1 3 5 6 7 11 | | | 3 = 3: 0 |
| | |
13th chords, diamorphic scales (Scale Degrees: 1234567) | | |
0 1 3 6 7 8 11 = mMb13b9#11, Shubhapantuvarali, todi | | | 3 = 3: 0 |
0 1 3 6 7 9 11 = mM13b9#11, Suvarnangi | | | 3 = 3: 0 |
0 1 3 6 7 10 11 = mM#13b9#11, Divyamani | | | 3 = 3: 0 |
0 1 4 5 6 8 11 = M7b13#5b9#11, Persian | | | 8 = 8: 0 |
0 2 3 5 6 10 11 = mM#13 | | | 2 = 2: 0 |
0 2 4 5 6 8 11 = M7b13b5 | | | 8 = 8: 0 |
0 2 4 5 6 10 11 = M#13b5 | | | 2 = 2: 0 |
0 3 4 5 6 8 11 = M7b13b5#9 | | | 8 = 8: 0 |
0 3 4 5 7 10 11 = M#13#9, Chalanata | | | 7 = 7: 0 |
0 3 4 5 8 9 10 = 13#5#9 | | | 0 = 0: 0 |
0 3 4 6 8 9 10 = 13#5#9 | | | 0 = 0: 0 |
| | |
Scale Degrees: 1235667 | | |
0 2 3 7 8 9 11 | | | 11 = 11: 0 |
0 3 4 7 8 9 10 | | | 0 = 0: 0 |
0 3 4 8 9 10 11 | | | 0 = 0: 0 |
| | |
Scale Degrees: 1244567 | | |
0 2 5 6 7 10 11 | | | 2 = 2: 0 |
| | |
Scale Degrees: 1344567 | | |
0 4 5 6 7 8 11 | | | 8 = 8: 0 |
| | |
Scale Degrees: 12223456 | | |
0 1 2 3 4 5 7 8 | | | 4 = 4: 0 |
0 1 2 3 4 6 7 8 | | | 4 = 4: 0 |
| | |
Scale Degrees: 12223457 | | |
0 1 2 3 4 6 7 11 | | | 3 = 3: 0 |
| | |
Scale Degrees: 12223566 | | |
0 1 2 3 4 7 8 9 | | | 4 = 4: 0 |
| | |
Scale Degrees: 12223567 | | |
0 1 2 3 4 7 8 10 | | | 4 = 4: 0 |
0 1 2 3 4 7 8 11 | | | 4 = 4: 0 |
| | |
Scale Degrees: 12234456 | | |
0 1 2 3 5 6 7 9 | | | 9 = 9: 0 |
0 1 2 4 5 6 7 8 | | | 4 = 4: 0 |
0 1 2 4 5 6 7 9 | | | 9 = 9: 0 |
0 1 3 4 5 6 7 9 | | | 9 = 9: 0 |
| | |
Scale Degrees: 12234457 | | |
0 1 2 3 5 6 7 11 | | | 3 = 3: 0 |
0 1 3 4 5 6 7 11 | | | 3 = 3: 0 |
| | |
Scale Degrees: 12234566 | | |
0 1 2 3 5 7 8 9 | | | 5 = 5: 0 |
0 1 2 4 5 7 8 9 | | | 4 = 4: 0 |
0 1 2 4 6 7 8 9 | | | 4 = 4: 0 |
| | |
diamorphic with supplementary 2nd (Scale Degrees: 12234567) | | |
0 1 2 3 6 7 8 10 | | | 10 = 10: 0 |
0 1 2 3 6 7 8 11 | | | 3 = 3: 0 |
0 1 2 3 6 7 9 11 | | | 3 = 3: 0 |
0 1 2 3 6 7 10 11 | | | 3 = 3: 0 |
0 1 2 4 5 7 8 10 | | | 4 = 4: 0 |
0 1 2 4 5 7 8 11 | | | 4 = 4: 0 |
0 1 2 4 6 7 8 10 | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 1 2 4 6 7 8 11 | | | 4 = 4: 0 |
0 1 3 4 5 7 10 11 | | | 7 = 7: 0 |
0 1 3 4 6 7 8 11 | | | 3 = 3: 0 |
0 1 3 4 6 7 9 11 | | | 3 = 3: 0 |
0 1 3 4 6 7 10 11 | | | 3 = 3: 0 |
0 2 3 4 5 6 9 10 | | | 6 = 6: 0 |
0 2 3 4 5 6 10 11 | | | 2 = 2: 0 |
0 2 3 4 5 7 10 11 | | | 7 = 7: 0 |
0 2 3 4 6 7 9 10 | | | 6 = 6: 0 |
| | |
Scale Degrees: 12234667 | | |
0 1 3 4 5 9 10 11 | | | 1 = 1: 0 |
| | |
Scale Degrees: 12235667 | | |
0 1 2 3 7 8 9 11 | | | 11 = 11: 0 |
0 1 2 4 7 8 9 10 | | | 4 = 4: 0 |
0 1 2 4 7 8 9 11 | | | 4 = 4: 0 |
0 1 2 4 7 8 10 11 | | | 4 = 4: 0 |
0 1 3 4 7 8 9 10 = ultraphrygian | | | 0 = 0: 0 |
0 1 3 4 8 9 10 11 | | | 0 = 0: 0 |
0 2 3 4 6 9 10 11 | | | 6 = 6: 0 |
0 2 3 4 7 8 9 10 | | | 0 = 0: 0 |
0 2 3 4 7 8 9 11 | | | 11 = 11: 0 |
0 2 3 4 8 9 10 11 | | | 0 = 0: 0 |
| | |
Scale Degrees: 12244566 | | |
0 1 2 5 6 7 8 9 | | | 9 = 9: 0 |
| | |
Scale Degrees: 12244567 | | |
0 1 2 5 6 7 8 10 | | | 10 = 10: 0 |
0 1 2 5 6 7 9 11 | | | 9 = 9: 0 |
0 1 2 5 6 7 10 11 | | | 2 = 2: 0 |
| | |
Scale Degrees: 12245667 | | |
0 1 2 6 7 8 10 11 | | | 10 = 10: 0 |
0 1 2 6 7 8 9 10 | | | 10 = 10: 0 |
| | |
Scale Degrees: 12344566 | | |
0 1 3 5 6 7 8 9 | | | 9 = 9: 0 |
| | |
diamorphic with supplementary 4th (Scale Degrees: 12344567) | | |
0 1 3 5 6 7 8 11 | | | 3 = 3: 0 |
0 1 3 5 6 7 9 10 | | | 9 = 9: 0 |
0 1 3 5 6 7 9 11 | | | 3 9 = 3: 0 6 = 9: 0 6 |
0 1 3 5 6 7 10 11 | | | 3 = 3: 0 |
0 1 4 5 6 7 8 9 | | | 9 = 9: 0 |
0 1 4 5 6 7 8 11 | | | 8 = 8: 0 |
0 1 4 5 6 7 9 10 | | | 9 = 9: 0 |
0 1 4 5 6 7 9 11 | | | 9 = 9: 0 |
0 1 4 5 6 8 10 11 = Persian | | | 8 = 8: 0 |
0 2 3 5 6 7 10 11 = 2367AB & min. pentat. | | | 2 = 2: 0 |
0 2 4 5 6 7 8 11 | | | 8 = 8: 0 |
0 2 4 5 6 7 10 11 | | | 2 = 2: 0 |
0 3 4 5 6 7 8 11 | | | 8 = 8: 0 |
0 3 4 5 6 7 10 11 | | | 7 = 7: 0 |
| | |
diamorphic with supplementary 6th (Scale Degrees: 12345667) | | |
0 1 3 6 7 8 9 11 | | | 3 = 3: 0 |
0 1 3 6 7 8 10 11 | | | 3 = 3: 0 |
0 1 3 6 7 9 10 11 | | | 3 = 3: 0 |
0 1 4 5 7 9 10 11 | | | 1 = 1: 0 |
0 2 3 5 7 8 9 11 = Bebop mel. min. | | | 11 = 11: 0 |
0 2 3 6 7 8 9 11 | | | 11 = 11: 0 |
0 2 4 5 6 9 10 11 | | | 2 = 2: 0 |
0 3 4 5 7 8 9 10 = Yagapriya | | | 0 = 0: 0 |
0 3 4 5 7 8 10 11 | | | 7 = 7: 0 |
0 3 4 5 7 9 10 11 | | | 7 = 7: 0 |
0 3 4 6 7 8 9 10 | | | 0 = 0: 0 |
| | |
Scale Degrees: 12356677 | | |
0 2 3 7 8 9 10 11 | | | 11 = 11: 0 |
0 3 4 7 8 9 10 11 | | | 0 = 0: 0 |
| | |
Scale Degrees: 12445667 | | |
0 1 5 6 7 9 10 11 | | | 9 = 9: 0 |
0 2 5 6 7 8 10 11 | | | 2 = 2: 0 |
0 2 5 6 7 9 10 11 | | | 2 = 2: 0 |
| | |
Scale Degrees: 13445667 | | |
0 4 5 6 7 8 10 11 | | | 8 = 8: 0 |
| | |
Scale Degrees: 122334456 | | |
0 1 2 3 4 5 6 7 8 = 1st 9chromatics | | | 4 = 4: 0 |
0 1 2 3 4 5 6 7 9 | | | 9 = 9: 0 |
| | |
Scale Degrees: 122334457 | | |
0 1 2 3 4 5 6 7 11 | | | 3 = 3: 0 |
| | |
Scale Degrees: 122334566 | | |
0 1 2 3 4 5 7 8 9 | | | 4 5 = 4: 0 1 = 5: 0 11 |
0 1 2 3 4 6 7 8 9 | | | 4 = 4: 0 |
| | |
diamorphic with supplementary 2nd, 3rd (Scale Degrees: 122334567) | | |
0 1 2 3 4 5 6 9 10 | | | 6 = 6: 0 |
0 1 2 3 4 5 7 8 10 | | | 4 = 4: 0 |
0 1 2 3 4 5 7 8 11 | | | 4 = 4: 0 |
0 1 2 3 4 5 7 10 11 | | | 7 = 7: 0 |
0 1 2 3 4 6 7 8 10 | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 1 2 3 4 6 7 8 11 | | | 3 4 = 3: 0 1 = 4: 0 11 |
0 1 2 3 4 6 7 9 10 | | | 6 = 6: 0 |
0 1 2 3 4 6 7 9 11 | | | 3 = 3: 0 |
0 1 2 3 4 6 7 10 11 | | | 3 = 3: 0 |
| | |
Scale Degrees: 122335667 | | |
0 1 2 3 4 7 8 9 10 | | | 0 4 = 0: 0 4 = 4: 0 8 |
0 1 2 3 4 7 8 9 11 | | | 4 11 = 4: 0 7 = 11: 0 5 |
0 1 2 3 4 7 8 10 11 | | | 4 = 4: 0 |
| | |
Scale Degrees: 122344566 | | |
0 1 2 3 5 6 7 8 9 | | | 5 9 = 5: 0 4 = 9: 0 8 |
0 1 2 4 5 6 7 8 9 | | | 4 9 = 4: 0 5 = 9: 0 7 |
| | |
diamorphic with supplementary 2nd, 4th (Scale Degrees: 122344567) | | |
0 1 2 3 5 6 7 8 10 | | | 10 = 10: 0 |
0 1 2 3 5 6 7 8 11 | | | 3 = 3: 0 |
0 1 2 3 5 6 7 9 10 = 12569A & m7, 12569A & min. pentat. | | | 9 = 9: 0 |
0 1 2 3 5 6 7 9 11 | | | 3 9 = 3: 0 6 = 9: 0 6 |
0 1 2 3 5 6 7 10 11 | | | 2 3 = 2: 0 1 = 3: 0 11 |
0 1 2 3 5 6 8 9 11 | | | 5 = 5: 0 |
0 1 2 4 5 6 7 8 10 | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 1 2 4 5 6 7 8 11 | | | 4 8 = 4: 0 4 = 8: 0 8 |
0 1 2 4 5 6 7 9 10 = 12569A & dom. 7 | | | 9 = 9: 0 |
0 1 2 4 5 6 7 9 11 | | | 9 = 9: 0 |
0 1 2 4 5 6 7 10 11 | | | 2 = 2: 0 |
0 1 3 4 5 6 7 8 11 | | | 3 8 = 3: 0 5 = 8: 0 7 |
0 1 3 4 5 6 7 9 10 | | | 9 = 9: 0 |
0 1 3 4 5 6 7 9 11 | | | 3 9 = 3: 0 6 = 9: 0 6 |
0 1 3 4 5 6 7 10 11 | | | 3 7 = 3: 0 4 = 7: 0 8 |
0 2 3 4 5 6 7 8 11 | | | 8 = 8: 0 |
0 2 3 4 5 6 7 9 10 | | | 6 = 6: 0 |
0 2 3 4 5 6 7 10 11 | | | 2 7 = 2: 0 5 = 7: 0 7 |
| | |
diamorphic with supplementary 2nd, 6th (Scale Degrees: 122345667) | | |
0 1 2 3 5 7 8 9 10 = phrygidorian | | | 5 = 5: 0 |
0 1 2 3 5 7 8 9 11 | | | 5 11 = 5: 0 6 = 11: 0 6 |
0 1 2 3 6 7 8 9 10 | | | 10 = 10: 0 |
0 1 2 3 6 7 8 9 11 | | | 3 11 = 3: 0 8 = 11: 0 4 |
0 1 2 3 6 7 8 10 11 | | | 3 10 = 3: 0 7 = 10: 0 5 |
0 1 2 3 6 7 9 10 11 | | | 3 = 3: 0 |
0 1 2 4 5 7 8 9 10 | | | 4 = 4: 0 |
0 1 2 4 5 7 8 9 11 | | | 4 = 4: 0 |
0 1 2 4 5 7 8 10 11 | | | 4 = 4: 0 |
0 1 2 4 5 7 9 10 11 | | | 1 = 1: 0 |
0 1 2 4 6 7 8 9 10 | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 1 2 4 6 7 8 9 11 = 9 in 5ths | | | 4 = 4: 0 |
0 1 2 4 6 7 8 10 11 | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 1 3 4 5 7 8 9 10 = 014589 & min. pentat. | | | 0 = 0: 0 |
0 1 3 4 5 7 8 10 11 = phrygian & aug. scale | | | 7 = 7: 0 |
0 1 3 4 5 7 9 10 11 | | | 1 7 = 1: 0 6 = 7: 0 6 |
0 1 3 4 6 7 8 9 10 | | | 0 = 0: 0 |
0 1 3 4 6 7 8 9 11 | | | 3 = 3: 0 |
0 1 3 4 6 7 8 10 11 | | | 3 = 3: 0 |
0 1 3 4 6 7 9 10 11 | | | 3 = 3: 0 |
0 2 3 4 5 6 9 10 11 | | | 2 6 = 2: 0 4 = 6: 0 8 |
0 2 3 4 5 7 8 9 10 = mixaeolean | | | 0 = 0: 0 |
0 2 3 4 5 7 8 9 11 = ionian & harm. min. | | | 11 = 11: 0 |
0 2 3 4 5 7 8 10 11 = aeolean & aug. scale, 03478B & bebop min. | | | 7 = 7: 0 |
0 2 3 4 5 7 9 10 11 = iodorian, mixolydian & mel. min. | | | 7 = 7: 0 |
0 2 3 4 6 7 8 9 10 | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 2 3 4 6 7 8 9 11 = lydian & aug. scale | | | 11 = 11: 0 |
0 2 3 4 6 7 9 10 11 | | | 6 = 6: 0 |
| | |
Scale Degrees: 122356677 | | |
0 1 3 4 7 8 9 10 11 | | | 0 = 0: 0 |
0 2 3 4 7 8 9 10 11 | | | 0 11 = 0: 0 11 = 11: 0 1 |
| | |
Scale Degrees: 122456677 | | |
0 1 2 6 7 8 9 10 11 | | | 10 = 10: 0 |
| | |
Scale Degrees: 123356677 | | |
0 1 2 3 7 8 9 10 11 | | | 11 = 11: 0 |
0 1 2 4 7 8 9 10 11 | | | 4 = 4: 0 |
| | |
diamorphic with supplementary 4th, 6th (Scale Degrees: 123445667) | | |
0 1 3 5 6 7 8 9 10 | | | 9 = 9: 0 |
0 1 3 5 6 7 8 9 11 | | | 3 9 = 3: 0 6 = 9: 0 6 |
0 1 4 5 6 7 8 9 10 | | | 9 = 9: 0 |
0 1 4 5 6 7 8 9 11 | | | 8 9 = 8: 0 1 = 9: 0 11 |
0 2 3 5 6 7 8 9 11 | | | 11 = 11: 0 |
0 2 3 5 6 8 9 10 11 | | | 2 = 2: 0 |
0 2 4 5 6 7 8 9 11 | | | 8 = 8: 0 |
| | |
diamorphic with supplementary 4th, 7th (Scale Degrees: 123445677) | | |
0 1 3 5 6 7 9 10 11 | | | 3 9 = 3: 0 6 = 9: 0 6 |
0 1 4 5 6 7 8 10 11 | | | 8 = 8: 0 |
0 1 4 5 6 7 9 10 11 | | | 1 9 = 1: 0 8 = 9: 0 4 |
0 2 3 5 6 7 8 10 11 = 2367AB & bebop min. | | | 2 = 2: 0 |
0 2 3 5 6 7 9 10 11 = 2367AB & mel. min. | | | 2 = 2: 0 |
0 2 4 5 6 7 8 10 11 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 2 4 5 6 7 9 10 11 = lydiomixlydian, full ryo | | | 2 = 2: 0 |
0 3 4 5 6 7 8 9 10 | | | 0 = 0: 0 |
0 3 4 5 6 7 8 9 11 | | | 8 = 8: 0 |
0 3 4 5 6 7 8 10 11 | | | 7 8 = 7: 0 1 = 8: 0 11 |
0 3 4 5 6 7 9 10 11 | | | 7 = 7: 0 |
| | |
diamorphic with supplementary 6th, 7th (Scale Degrees: 123456677) | | |
0 1 3 6 7 8 9 10 11 | | | 3 = 3: 0 |
0 1 4 5 7 8 9 10 11 | | | 1 = 1: 0 |
0 2 3 5 7 8 9 10 11 = dorian & harm. min., aeolean & mel. min. | | | 11 = 11: 0 |
0 2 3 6 7 8 9 10 11 | | | 11 = 11: 0 |
0 3 4 5 7 8 9 10 11 | | | 0 7 = 0: 0 7 = 7: 0 5 |
0 3 4 6 7 8 9 10 11 | | | 0 = 0: 0 |
| | |
Scale Degrees: 134456677 | | |
0 4 5 6 7 8 9 10 11 | | | 8 = 8: 0 |
| | |
chromatic decachord (Scale Degrees: 1223344566) | | |
0 1 2 3 4 5 6 7 8 9 = 1st 10 chromatics | | | 4 5 9 = 4: 0 1 5 = 5: 0 4 11 = 9: 0 7 8 |
| | |
diamorphic with supplementary 2nd, 3rd, 4th (Scale Degrees: 1223344567) | | |
0 1 2 3 4 5 6 7 8 10 = whole tone & phrygian | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 1 2 3 4 5 6 7 8 11 | | | 3 4 8 = 3: 0 1 5 = 4: 0 4 11 = 8: 0 7 8 |
0 1 2 3 4 5 6 7 9 10 = auxdim. scale & dorian | | | 6 9 = 6: 0 3 = 9: 0 9 |
0 1 2 3 4 5 6 7 9 11 | | | 3 9 = 3: 0 6 = 9: 0 6 |
0 1 2 3 4 5 6 7 10 11 | | | 2 3 7 = 2: 0 1 5 = 3: 0 4 11 = 7: 0 7 8 |
| | |
diamorphic with supplementary 2nd, 3rd, 6th (Scale Degrees: 1223345667) | | |
0 1 2 3 4 5 6 8 9 10 | | | 0 5 6 = 0: 0 5 6 = 5: 0 1 7 = 6: 0 6 11 |
0 1 2 3 4 5 6 8 9 11 | | | 5 8 = 5: 0 3 = 8: 0 9 |
0 1 2 3 4 5 6 8 10 11 | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 1 2 3 4 5 6 9 10 11 | | | 1 2 6 = 1: 0 1 5 = 2: 0 4 11 = 6: 0 7 8 |
0 1 2 3 4 5 7 8 9 10 = mixophrygian | | | 0 4 5 = 0: 0 4 5 = 4: 0 1 8 = 5: 0 7 11 |
0 1 2 3 4 5 7 8 9 11 = 014589 & mel. min. | | | 4 5 11 = 4: 0 1 7 = 5: 0 6 11 = 11: 0 5 6 |
0 1 2 3 4 5 7 8 10 11 | | | 4 7 = 4: 0 3 = 7: 0 9 |
0 1 2 3 4 5 7 9 10 11 | | | 1 7 = 1: 0 6 = 7: 0 6 |
0 1 2 3 4 5 8 9 10 11 | | | 0 1 5 = 0: 0 1 5 = 1: 0 4 11 = 5: 0 7 8 |
0 1 2 3 4 6 7 8 9 10 | | | 0 4 6 10 = 0: 0 4 6 10 = 4: 0 2 6 8 = 6: 0 4 6 10 = 10: 0 2 6 8 |
0 1 2 3 4 6 7 8 9 11 = 10 in 5ths | | | 3 4 11 = 3: 0 1 8 = 4: 0 7 11 = 11: 0 4 5 |
0 1 2 3 4 6 7 8 10 11 | | | 3 4 10 = 3: 0 1 7 = 4: 0 6 11 = 10: 0 5 6 |
0 1 2 3 4 6 7 9 10 11 = auxdim. scale & lydian | | | 3 6 = 3: 0 3 = 6: 0 9 |
0 1 2 3 4 6 8 9 10 11 | | | 0 6 = 0: 0 6 = 6: 0 6 |
| | |
Scale Degrees: 1223356667 | | |
0 1 2 3 4 7 8 9 10 11 | | | 0 4 11 = 0: 0 4 11 = 4: 0 7 8 = 11: 0 1 5 |
| | |
diamorphic with supplementary 2nd, 4th, 6th (Scale Degrees: 1223445667) | | |
0 1 2 3 5 6 7 8 9 10 = locridorian | | | 5 9 10 = 5: 0 4 5 = 9: 0 1 8 = 10: 0 7 11 |
0 1 2 3 5 6 7 8 9 11 | | | 3 5 9 11 = 3: 0 2 6 8 = 5: 0 4 6 10 = 9: 0 2 6 8 = 11: 0 4 6 10 |
0 1 2 3 5 6 7 8 10 11 = locrian & harm. min. | | | 2 3 10 = 2: 0 1 8 = 3: 0 7 11 = 10: 0 4 5 |
0 1 2 3 5 6 7 9 10 11 = 12569A & mel. min. | | | 2 3 9 = 2: 0 1 7 = 3: 0 6 11 = 9: 0 5 6 |
0 1 2 3 5 6 8 9 10 11 = dim. scale & locrian | | | 2 5 = 2: 0 3 = 5: 0 9 |
0 1 2 4 5 6 7 8 9 10 | | | 4 9 10 = 4: 0 5 6 = 9: 0 1 7 = 10: 0 6 11 |
0 1 2 4 5 6 7 8 9 11 | | | 4 8 9 = 4: 0 4 5 = 8: 0 1 8 = 9: 0 7 11 |
0 1 2 4 5 6 7 8 10 11 | | | 2 4 8 10 = 2: 0 2 6 8 = 4: 0 4 6 10 = 8: 0 2 6 8 = 10: 0 4 6 10 |
0 1 2 4 5 6 7 9 10 11 = 12569A & bebop maj. | | | 1 2 9 = 1: 0 1 8 = 2: 0 7 11 = 9: 0 4 5 |
0 1 2 4 5 6 8 9 10 11 | | | 1 2 8 = 1: 0 1 7 = 2: 0 6 11 = 8: 0 5 6 |
0 1 3 4 5 6 7 8 9 10 = auxdim. scale & phrygian, 014589 & auxdim. scale | | | 0 9 = 0: 0 9 = 9: 0 3 |
0 1 3 4 5 6 7 8 9 11 | | | 3 8 9 = 3: 0 5 6 = 8: 0 1 7 = 9: 0 6 11 |
0 1 3 4 5 6 7 8 10 11 = locrian & aug. scale | | | 3 7 8 = 3: 0 4 5 = 7: 0 1 8 = 8: 0 7 11 |
0 1 3 4 5 6 7 9 10 11 | | | 1 3 7 9 = 1: 0 2 6 8 = 3: 0 4 6 10 = 7: 0 2 6 8 = 9: 0 4 6 10 |
0 2 3 4 5 6 7 8 9 10 | | | 0 6 = 0: 0 6 = 6: 0 6 |
0 2 3 4 5 6 7 8 9 11 = lydian & harm. min. | | | 8 11 = 8: 0 3 = 11: 0 9 |
0 2 3 4 5 6 7 8 10 11 | | | 2 7 8 = 2: 0 5 6 = 7: 0 1 7 = 8: 0 6 11 |
0 2 3 4 5 6 7 9 10 11 = dorelydian, 2367AB & bebop maj. | | | 2 6 7 = 2: 0 4 5 = 6: 0 1 8 = 7: 0 7 11 |
0 2 3 4 5 6 8 9 10 11 | | | 0 2 6 8 = 0: 0 2 6 8 = 2: 0 4 6 10 = 6: 0 2 6 8 = 8: 0 4 6 10 |
| | |
diamorphic with supplementary 2nd, 6th, 7th (Scale Degrees: 1223456677) | | |
0 1 2 3 5 7 8 9 10 11 = phrygian & mel. min. | | | 5 11 = 5: 0 6 = 11: 0 6 |
0 1 2 3 6 7 8 9 10 11 | | | 3 10 11 = 3: 0 7 8 = 10: 0 1 5 = 11: 0 4 11 |
0 1 2 4 5 7 8 9 10 11 = 014589 & bebop maj., Span. Gypsy & ionian | | | 1 4 = 1: 0 3 = 4: 0 9 |
0 1 2 4 6 7 8 9 10 11 | | | 4 10 = 4: 0 6 = 10: 0 6 |
0 1 3 4 5 6 8 9 10 11 = 10 in 4ths | | | 0 1 8 = 0: 0 1 8 = 1: 0 7 11 = 8: 0 4 5 |
0 1 3 4 5 7 8 9 10 11 | | | 0 1 7 = 0: 0 1 7 = 1: 0 6 11 = 7: 0 5 6 |
0 1 3 4 6 7 8 9 10 11 = 03478B & auxdim. scale | | | 0 3 = 0: 0 3 = 3: 0 9 |
0 2 3 4 5 7 8 9 10 11 = ioaeolean, mixolydian & harm. min. | | | 0 7 11 = 0: 0 7 11 = 7: 0 4 5 = 11: 0 1 8 |
0 2 3 4 6 7 8 9 10 11 | | | 0 6 11 = 0: 0 6 11 = 6: 0 5 6 = 11: 0 1 7 |
| | |
Scale Degrees: 1224456677 | | |
0 1 2 5 6 7 8 9 10 11 | | | 2 9 10 = 2: 0 7 8 = 9: 0 1 5 = 10: 0 4 11 |
| | |
diamorphic with supplementary 4th, 6th, 7th (Scale Degrees: 1234456677) | | |
0 1 3 5 6 7 8 9 10 11 | | | 3 9 = 3: 0 6 = 9: 0 6 |
0 1 4 5 6 7 8 9 10 11 | | | 1 8 9 = 1: 0 7 8 = 8: 0 1 5 = 9: 0 4 11 |
0 2 3 5 6 7 8 9 10 11 = dim. scale & dorian | | | 2 11 = 2: 0 9 = 11: 0 3 |
0 2 4 5 6 7 8 9 10 11 = whole tone & ionian | | | 2 8 = 2: 0 6 = 8: 0 6 |
0 3 4 5 6 7 8 9 10 11 | | | 0 7 8 = 0: 0 7 8 = 7: 0 1 5 = 8: 0 4 11 |
| | |
chromatic unidecachord = diamorphic with supplementary 2nd, 3rd, 4th, 6th (Scale Degrees: 12233445667) | | |
0 1 2 3 4 5 6 7 8 9 10 = mixolocrian, 1st 11 chromatics | | | 0 4 5 6 9 10 = 0: 0 4 5 6 9 10 = 4: 0 1 2 5 6 8 = 5: 0 1 4 5 7 11 = 6: 0 3 4 6 10 11 = 9: 0 1 3 7 8 9 = 10: 0 2 6 7 8 11 |
0 1 2 3 4 5 6 7 8 9 11 | | | 3 4 5 8 9 11 = 3: 0 1 2 5 6 8 = 4: 0 1 4 5 7 11 = 5: 0 3 4 6 10 11 = 8: 0 1 3 7 8 9 = 9: 0 2 6 7 8 11 = 11: 0 4 5 6 9 10 |
0 1 2 3 4 5 6 7 8 10 11 | | | 2 3 4 7 8 10 = 2: 0 1 2 5 6 8 = 3: 0 1 4 5 7 11 = 4: 0 3 4 6 10 11 = 7: 0 1 3 7 8 9 = 8: 0 2 6 7 8 11 = 10: 0 4 5 6 9 10 |
0 1 2 3 4 5 6 7 9 10 11 = auxdim. scale & ionian | | | 1 2 3 6 7 9 = 1: 0 1 2 5 6 8 = 2: 0 1 4 5 7 11 = 3: 0 3 4 6 10 11 = 6: 0 1 3 7 8 9 = 7: 0 2 6 7 8 11 = 9: 0 4 5 6 9 10 |
| | |
diamorphic with supplementary 2nd, 3rd, 6th, 7th (Scale Degrees: 12233456677) | | |
0 1 2 3 4 5 6 8 9 10 11 = 11 in 4ths | | | 0 1 2 5 6 8 = 0: 0 1 2 5 6 8 = 1: 0 1 4 5 7 11 = 2: 0 3 4 6 10 11 = 5: 0 1 3 7 8 9 = 6: 0 2 6 7 8 11 = 8: 0 4 5 6 9 10 |
0 1 2 3 4 5 7 8 9 10 11 = iophrygian, Spanish Gypsy & dorian, consonant-11 | | | 0 1 4 5 7 11 = 0: 0 1 4 5 7 11 = 1: 0 3 4 6 10 11 = 4: 0 1 3 7 8 9 = 5: 0 2 6 7 8 11 = 7: 0 4 5 6 9 10 = 11: 0 1 2 5 6 8 |
0 1 2 3 4 6 7 8 9 10 11 = 11 in 5ths, most stable 11 chord type | | | 0 3 4 6 10 11 = 0: 0 3 4 6 10 11 = 3: 0 1 3 7 8 9 = 4: 0 2 6 7 8 11 = 6: 0 4 5 6 9 10 = 10: 0 1 2 5 6 8 = 11: 0 1 4 5 7 11 |
| | |
diamorphic with supplementary 2nd, 4th, 6th, 7th (Scale Degrees: 12234456677) | | |
0 1 2 3 5 6 7 8 9 10 11 = locrian & mel. min., dim. & phrygian | | | 2 3 5 9 10 11 = 2: 0 1 3 7 8 9 = 3: 0 2 6 7 8 11 = 5: 0 4 5 6 9 10 = 9: 0 1 2 5 6 8 = 10: 0 1 4 5 7 11 = 11: 0 3 4 6 10 11 |
0 1 2 4 5 6 7 8 9 10 11 = Northern lights chord | | | 1 2 4 8 9 10 = 1: 0 1 3 7 8 9 = 2: 0 2 6 7 8 11 = 4: 0 4 5 6 9 10 = 8: 0 1 2 5 6 8 = 9: 0 1 4 5 7 11 = 10: 0 3 4 6 10 11 |
0 1 3 4 5 6 7 8 9 10 11 | | | 0 1 3 7 8 9 = 0: 0 1 3 7 8 9 = 1: 0 2 6 7 8 11 = 3: 0 4 5 6 9 10 = 7: 0 1 2 5 6 8 = 8: 0 1 4 5 7 11 = 9: 0 3 4 6 10 11 |
0 2 3 4 5 6 7 8 9 10 11 = aeolydian, whole tone & dorian | | | 0 2 6 7 8 11 = 0: 0 2 6 7 8 11 = 2: 0 4 5 6 9 10 = 6: 0 1 2 5 6 8 = 7: 0 1 4 5 7 11 = 8: 0 3 4 6 10 11 = 11: 0 1 3 7 8 9 |
| | |
chromatic Scale = diamorphic with supplementary 2nd, 3rd, 4th, 6th, 7th (Scale Degrees: 122334456677) | | |
0 1 2 3 4 5 6 7 8 9 10 11 = chromatic, dodecachord, 12 in 4ths, 12 in 5ths | | | 0 1 2 3 4 5 6 7 8 9 10 11 = 0: 0 1 2 3 4 5 6 7 8 9 10 11 = 1: 0 1 2 3 4 5 6 7 8 9 10 11 = 2: 0 1 2 3 4 5 6 7 8 9 10 11 = 3: 0 1 2 3 4 5 6 7 8 9 10 11 = 4: 0 1 2 3 4 5 6 7 8 9 10 11 = 5: 0 1 2 3 4 5 6 7 8 9 10 11 = 6: 0 1 2 3 4 5 6 7 8 9 10 11 = 7: 0 1 2 3 4 5 6 7 8 9 10 11 = 8: 0 1 2 3 4 5 6 7 8 9 10 11 = 9: 0 1 2 3 4 5 6 7 8 9 10 11 = 10: 0 1 2 3 4 5 6 7 8 9 10 11 = 11: 0 1 2 3 4 5 6 7 8 9 10 11 |
| | |