# Chord Type: 0 1 3 7

## 0 1 3 7 = m add b9 = all-interval tetrachord

This Chord Type Chord Diagrams in 4ths Tuning
This Chord Type, All Keys -- Notation: (Staff, Treble Clef) Audio: (.mp3)

All Chord Types Arpeggiated in All Keys (Standard Notation, Treble Clef)
All Chord Type Main Pages, Non-Collapsible Index
All Chord Type Main Pages, Collapsible Index

## General Statistics

Cardinality:                     4
Jordan Number:                   4-13
Forte Number:                    4-z29
Forte Prime Form:                [0,1,3,7]
Zeitler Scale Name:

Root Reference:                  0 1 3 7
Tone Stacking:                   0 1 2 4
Interval Stacking:               1 2 4 5
Binary:                          1 1 0 1 0 0 0 1 0 0 0 0
Decimal Value:                   139

Interval Vector:                 1 1 1 1 1 1
Inversional Symmetry:            no
Transpositional Symmetry:        no

All Transopositions of Chord Type:
• +0= 0 1  3  7 |m add b9 = all-interval tetrachord
+1= 1 2  4  8 |
+2= 2 3  5  9 |
+3= 3 4  6 10 |
+4= 4 5  7 11 |
+5= 0 5  6  8 |
+6= 1 6  7  9 |
+7= 2 7  8 10 |
+8= 3 8  9 11 |
+9= 0 4  9 10 |7/6 no 5th = all-interval tetrachord
+10= 1 5 10 11 |
+11= 0 2  6 11 |
Modes of Chord Type:
• (mode 0) 0: 0 1 3  7 | m add b9 = all-interval tetrachord
(mode 1) 1: 0 2 6 11 |
(mode 2) 3: 0 4 9 10 | 7/6 no 5th = all-interval tetrachord
(mode 3) 7: 0 5 6  8 |
Inversion at 0:               0 5 9 11
• (mode 0) 0:  0 5 9 11 |
(mode 1) 5:  0 4 6  7 | M add#11 = Jetsons tetrachord = all-interval tetrachord
(mode 2) 9:  0 2 3  8 |
(mode 3) 11: 0 1 6 10 |
Times 7:                      0 1 7 9
• (mode 0) 0: 0 1 7  9 | all-interval tetrachord
(mode 1) 1: 0 6 8 11 |
(mode 2) 7: 0 2 5  6 |
(mode 3) 9: 0 3 4 10 | 7#9 no 5th = Hendrix tetrachord = all-interval tetrachord
Times 5:                      0 3 5 11
• (mode 0) 0:  0 3 5 11 | all-interval tetrachord
(mode 1) 3:  0 2 8  9 |
(mode 2) 5:  0 6 7 10 | 7sus#4 = all-interval tetrachord
(mode 3) 11: 0 1 4  6 |

Modal System:                     0 1 3 7 from root(s) 0 | "minor add b9 modal system"
Modes of Modal System:
• (mode 0) 0: 0 1 3  7 | m add b9 = all-interval tetrachord
(mode 1) 1: 0 2 6 11 |
(mode 2) 3: 0 4 9 10 | 7/6 no 5th = all-interval tetrachord
(mode 3) 7: 0 5 6  8 |

Complement:                    2 4 5 6 8 9 10 11
• (mode 0) 2:  0 2 3 4 6 7  8  9 |
(mode 1) 4:  0 1 2 4 5 6  7 10 |
(mode 2) 5:  0 1 3 4 5 6  9 11 |
(mode 3) 6:  0 2 3 4 5 8 10 11 |
(mode 4) 8:  0 1 2 3 6 8  9 10 |
(mode 5) 9:  0 1 2 5 7 8  9 11 |
(mode 6) 10: 0 1 4 6 7 8 10 11 |
(mode 7) 11: 0 3 5 6 7 9 10 11 |
All but the root (subchroma complement of 0): 1 3 7
• (mode 0) 1: 0 2  6 |
(mode 1) 3: 0 4 10 | 7 no 5th
(mode 2) 7: 0 6  8 |

Dechromaticised: N/A
Dechromaticised but Keep 0       N/A
Dechromaticised but Keep 0 7     N/A

## Subsets by Subchroma Modal System

• Subchroma Modal Systems of 0 1 3 7

subchroma modal system: 0
0 =  0 =  0:  0
1 =  1 =  1:  0
3 =  3 =  3:  0
7 =  7 =  7:  0

subchroma modal system: 0 1
0  1 =  0  1 =  0:  0  1     1:  0 11
1  3 =  1  3 =  1:  0  2     3:  0 10
3  7 =  3  7 =  3:  0  4     7:  0  8
7  0 =  0  7 =  7:  0  5     0:  0  7

subchroma modal system: 0 2
0  3 =  0  3 =  0:  0  3     3:  0  9
1  7 =  1  7 =  1  7:  0  6
3  0 =  0  3 =  0:  0  3     3:  0  9
7  1 =  1  7 =  1  7:  0  6

subchroma modal system: 0 1 2
0  1  3 =  0  1  3 =  0:  0  1  3     1:  0  2 11
1  3  7 =  1  3  7 =  3:  0  4 10
3  7  0 =  0  3  7 =  0:  0  3  7     3:  0  4  9
7  0  1 =  0  1  7 =  0:  0  1  7

subchroma modal system: 0 1 2 3
0  1  3  7 =  0  1  3  7 =  0:  0  1  3  7     3:  0  4  9 10
1  3  7  0 =  0  1  3  7 =  0:  0  1  3  7     3:  0  4  9 10
3  7  0  1 =  0  1  3  7 =  0:  0  1  3  7     3:  0  4  9 10
7  0  1  3 =  0  1  3  7 =  0:  0  1  3  7     3:  0  4  9 10

## Subsets By Chord Type

•  Chord Type Roots Unison (Scale Degrees: 1) 0 = root, unison, octave | 0 1 3 7 = 0: 0 1 3 7 = 1: 0 2 6 11 = 3: 0 4 9 10 = 7: 0 5 6 8 2nds / 9ths = 1st 2 notes of diamorphic scale (Scale Degrees: 12) 0 1 = semitone, min. 2nd, min. 9th | 0 = 0: 0 0 2 = maj. 2nd, dim., maj. 9th | 1 = 1: 0 3rds / 10ths (Scale Degrees: 13) 0 3 = aug. 2nd, min. 3rd, aug. 9th | 0 = 0: 0 0 4 = maj. 3rd, maj. 10th, dim. 4th | 3 = 3: 0 4ths / 11ths (Scale Degrees: 14) 0 5 = 4th, 11th, 2 in 4ths | 7 = 7: 0 0 6 = tritone, aug. 4th, dim. 5th, aug. 11th | 1 7 = 1: 0 6 = 7: 0 6 5ths / 12ths (Scale Degrees: 15) 0 7 = 5th, 2 in 5ths | 0 = 0: 0 6ths / 13ths (Scale Degrees: 16) 0 8 = aug. 5th, min. 6th, aug. 12th, min. 13th | 7 = 7: 0 0 9 = maj. 6th, maj. 13th, dim. 7th | 3 = 3: 0 7ths / 14ths (Scale Degrees: 17) 0 10 = aug. 6th, min. 7th, aug. 13th | 3 = 3: 0 0 11 = maj. 7th, maj. 14th | 1 = 1: 0 1st 3 notes of diamorphic scale (Scale Degrees: 123) 0 1 3 | 0 = 0: 0 Sus2 triads (Scale Degrees: 125) 0 1 7 | 0 = 0: 0 Root with upper and lower neighbors (Scale Degrees: 127) 0 2 11 | 1 = 1: 0 Triads (Scale Degrees: 135) 0 3 7 = m = minor | 0 = 0: 0 6ths chords no 5th (Scale Degrees: 136) 0 4 9 = M6 no 5th | 3 = 3: 0 7th chords no 5th (Scale Degrees: 137) 0 4 10 = 7 no 5th | 3 = 3: 0 Add 9 Chords (Scale Degrees: 1235) 0 1 3 7 = m add b9, all-int | 0 = 0: 0 6/7 chords no 5th (Scale Degrees: 1367) 0 4 9 10 = 7/6 no 5th, all-int | 3 = 3: 0

## Parallel Subsets

•  Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 3 7 0 6 1 7 1:0 6 1 7 1:0 6 0 3 1 7 7

## Supersets By Chord Type

•  Chord Type Roots Add 9 Chords (Scale Degrees: 1235) 0 1 3 7 = m add b9, all-int | 0 = 0: 0 6/7 chords no 5th (Scale Degrees: 1367) 0 4 9 10 = 7/6 no 5th, all-int | 9 = 9: 0 Scale Degrees: 12235 0 1 2 3 7 | 0 = 0: 0 0 1 2 4 8 | 1 = 1: 0 0 1 3 4 7 | 0 = 0: 0 1st 5 notes of diamorphic scale (Scale Degrees: 12345) 0 1 3 5 7 = phrygilocrian pentachord | 0 = 0: 0 0 1 3 6 7 | 0 = 0: 0 6/9 chords (Scale Degrees: 12356) 0 1 3 7 8 | 0 = 0: 0 0 1 3 7 9 | 0 = 0: 0 9th chords (Scale Degrees: 12357) 0 1 3 7 10 = m7b9 | 0 = 0: 0 0 1 3 7 11 = mM7b9 | 0 = 0: 0 0 2 3 6 11 = mM9b5 | 11 = 11: 0 0 2 4 6 11 = M9b5 | 11 = 11: 0 0 3 4 6 10 = 7b5#9 | 3 = 3: 0 13th chords no 5th no 11th (Scale Degrees: 12367) 0 1 4 9 10 = 13b9 no 5th no 11th | 9 = 9: 0 0 2 4 9 10 = 13 no 5th no 11th | 9 = 9: 0 0 3 4 9 10 = 13#9 no 5th no 11th | 9 = 9: 0 Scale Degrees: 12456 0 1 6 7 9 | 6 = 6: 0 11th chords no 3rd (Scale Degrees: 12457) 0 2 6 7 11 | 11 = 11: 0 13th chords no 3rd no 11th (Scale Degrees: 12567) 0 2 7 8 10 | 7 = 7: 0 Scale Degrees: 13456 0 3 5 6 8 | 5 = 5: 0 0 4 5 6 8 | 5 = 5: 0 11th Chords no 9th (Scale Degrees: 13457) 0 4 5 7 11 = M11 no 9th, ryukuan | 4 = 4: 0 7/6 Chords (Scale Degrees: 13567) 0 4 7 9 10 = 7/6, boogie woogie | 9 = 9: 0 0 4 8 9 10 = 7#5/6 | 9 = 9: 0 Scale Degrees: 13677 0 4 9 10 11 | 9 = 9: 0 Scale Degrees: 122335 0 1 2 3 4 7 | 0 = 0: 0 0 1 2 3 4 8 | 1 = 1: 0 Scale Degrees: 122345 0 1 2 3 5 7 | 0 = 0: 0 0 1 2 3 6 7 | 0 = 0: 0 0 1 2 4 6 8 | 1 = 1: 0 0 1 3 4 5 7 | 0 = 0: 0 0 1 3 4 6 7 = Istrian | 0 = 0: 0 Scale Degrees: 122356 0 1 2 3 7 8 | 0 = 0: 0 0 1 2 3 7 9 | 0 = 0: 0 0 1 2 4 7 8 = all-tri hex | 1 = 1: 0 0 1 2 4 8 9 | 1 = 1: 0 0 1 3 4 7 8 | 0 = 0: 0 0 1 3 4 7 9 | 0 = 0: 0 Scale Degrees: 122357 0 1 2 3 6 11 | 11 = 11: 0 0 1 2 3 7 10 | 0 = 0: 0 0 1 2 3 7 11 | 0 = 0: 0 0 1 2 4 6 11 | 11 = 11: 0 0 1 2 4 8 10 | 1 = 1: 0 0 1 3 4 7 10 | 0 = 0: 0 0 1 3 4 7 11 | 0 = 0: 0 0 2 3 4 6 10 | 3 = 3: 0 0 2 3 4 6 11 | 11 = 11: 0 Scale Degrees: 122367 0 1 2 4 9 10 | 9 = 9: 0 0 1 3 4 9 10 | 9 = 9: 0 0 2 3 4 9 10 | 9 = 9: 0 Scale Degrees: 122456 0 1 2 6 7 9 | 6 = 6: 0 Scale Degrees: 122457 0 1 2 6 7 11 | 11 = 11: 0 Scale Degrees: 122567 0 1 2 6 10 11 | 11 = 11: 0 0 1 2 7 8 10 | 7 = 7: 0 Scale Degrees: 123445 0 1 3 5 6 7 | 0 = 0: 0 1st 6 notes of diamorphic scale = diamorphic scales no 7th (Scale Degrees: 123456) 0 1 3 5 7 8 | 0 = 0: 0 0 1 3 5 7 9 | 0 = 0: 0 0 1 3 6 7 8 | 0 = 0: 0 0 1 3 6 7 9 | 0 6 = 0: 0 6 = 6: 0 6 0 1 4 6 7 9 | 6 = 6: 0 0 2 3 5 6 8 | 5 = 5: 0 0 2 3 5 7 9 | 2 = 2: 0 11th chords = diamorphic scales no 6th (Scale Degrees: 123457) 0 1 3 5 7 10 = m11b9 | 0 = 0: 0 0 1 3 5 7 11 = mM11b9 | 0 = 0: 0 0 1 3 6 7 10 = m#11b9 | 0 = 0: 0 0 1 3 6 7 11 = mM#11b9, all-tri hex | 0 = 0: 0 0 1 4 5 7 11 = M11b9 | 4 = 4: 0 0 2 3 5 6 11 = mM#11 | 11 = 11: 0 0 2 3 6 7 11 = mM#11 | 11 = 11: 0 0 2 4 5 6 11 = mM11b5 | 11 = 11: 0 0 2 4 5 7 11 = M11 | 4 = 4: 0 0 2 4 6 7 11 = M7#11 | 11 = 11: 0 0 3 4 5 6 10 = 11b5#9 | 3 = 3: 0 0 3 4 5 7 11 = M11#9 | 4 = 4: 0 0 3 4 6 7 10 = 7#9#11 | 3 = 3: 0 Scale Degrees: 123467 0 1 3 5 10 11 = mM#13b9 no 5 | 10 = 10: 0 0 1 4 5 10 11 = M#13b9 no 5 | 10 = 10: 0 Scale Degrees: 123566 0 1 3 7 8 9 | 0 = 0: 0 13th chords no 11th = diamorphic scales no 4th (Scale Degrees: 123567) 0 1 3 7 8 10 = mb13b9 no 11th | 0 = 0: 0 0 1 3 7 8 11 = mMb13b9 no 11th | 0 = 0: 0 0 1 3 7 9 10 = m13b9 no 11th | 0 = 0: 0 0 1 3 7 9 11 = mM13b9 no 11th | 0 = 0: 0 0 1 3 7 10 11 = mM#13b9 no 11th | 0 = 0: 0 0 1 4 7 9 10 = 13b9 no 11th | 9 = 9: 0 0 2 3 7 8 10 = mb13 no 11th | 7 = 7: 0 0 2 4 7 8 10 = 7b13 no 11th | 7 = 7: 0 0 2 4 7 9 10 = 13 no 11th | 9 = 9: 0 0 2 4 8 9 10 = 13#5 no 11th | 9 = 9: 0 0 3 4 6 10 11 = M#13b5#9 no 11th | 3 = 3: 0 0 3 4 7 9 10 = 13#9 no 11th | 9 = 9: 0 0 3 4 8 9 10 = M#13#5#9 no 11th, all-tri hex | 9 = 9: 0 0 3 4 8 9 11 = M13#5#9 no 11th | 8 = 8: 0 Scale Degrees: 123667 0 1 4 9 10 11 | 9 = 9: 0 0 2 4 9 10 11 | 9 = 9: 0 0 3 4 9 10 11 | 9 = 9: 0 Scale Degrees: 124457 0 2 5 6 7 11 | 11 = 11: 0 diamorphic scales no 3rd (Scale Degrees: 124567) 0 1 5 7 10 11 | 10 = 10: 0 0 1 6 7 9 10 | 6 = 6: 0 0 1 6 7 9 11 | 6 = 6: 0 0 2 5 7 8 10 | 7 = 7: 0 0 2 6 7 8 10 | 7 = 7: 0 0 2 6 7 8 11 | 11 = 11: 0 0 2 6 7 9 11 | 11 = 11: 0 0 2 6 7 10 11 | 11 = 11: 0 Scale Degrees: 125667 0 2 7 8 9 10 | 7 = 7: 0 0 2 7 8 10 11 | 7 = 7: 0 Scale Degrees: 134456 0 4 5 6 7 8 | 5 = 5: 0 Scale Degrees: 134457 0 4 5 6 7 11 | 4 = 4: 0 diamorphic scales no 2nd (Scale Degrees: 134567) 0 4 5 7 8 11 = M7b13 no 9th | 4 = 4: 0 0 4 5 7 9 10 = 13 no 9th | 9 = 9: 0 0 4 5 7 9 11 = M13 no 9th | 4 = 4: 0 0 4 5 7 10 11 = M#13 no 9th | 4 = 4: 0 0 4 6 7 9 10 = 13#11 no 9th | 9 = 9: 0 Scale Degrees: 135667 0 3 7 8 9 11 | 8 = 8: 0 0 4 6 9 10 11 | 9 = 9: 0 0 4 7 8 9 10 | 9 = 9: 0 0 4 7 9 10 11 | 9 = 9: 0 0 4 8 9 10 11 | 9 = 9: 0 chromatic septachord (Scale Degrees: 1223345) 0 1 2 3 4 5 7 | 0 = 0: 0 0 1 2 3 4 6 7 | 0 = 0: 0 Scale Degrees: 1223356 0 1 2 3 4 7 8 | 0 1 = 0: 0 1 = 1: 0 11 0 1 2 3 4 7 9 | 0 = 0: 0 Scale Degrees: 1223357 0 1 2 3 4 6 10 | 3 = 3: 0 0 1 2 3 4 7 10 | 0 = 0: 0 0 1 2 3 4 7 11 | 0 = 0: 0 0 1 2 3 4 8 10 | 1 = 1: 0 0 1 2 3 4 8 11 | 1 = 1: 0 Scale Degrees: 1223367 0 1 2 3 4 9 10 | 9 = 9: 0 Scale Degrees: 1223445 0 1 2 3 5 6 7 | 0 = 0: 0 0 1 3 4 5 6 7 | 0 = 0: 0 Scale Degrees: 1223456 0 1 2 3 5 7 8 | 0 = 0: 0 0 1 2 3 5 7 9 | 0 2 = 0: 0 2 = 2: 0 10 0 1 2 3 6 7 8 | 0 = 0: 0 0 1 2 3 6 7 9 | 0 6 = 0: 0 6 = 6: 0 6 0 1 2 4 5 7 8 | 1 = 1: 0 0 1 2 4 6 7 8 | 1 = 1: 0 0 1 2 4 6 7 9 | 6 = 6: 0 0 1 3 4 5 7 8 | 0 = 0: 0 0 1 3 4 5 7 9 | 0 = 0: 0 0 1 3 4 6 7 8 | 0 = 0: 0 0 1 3 4 6 7 9 | 0 6 = 0: 0 6 = 6: 0 6 0 2 3 4 5 6 9 | 2 = 2: 0 0 2 3 4 5 7 9 | 2 = 2: 0 Scale Degrees: 1223457 0 1 2 3 5 7 10 | 0 = 0: 0 0 1 2 3 5 7 11 | 0 = 0: 0 0 1 2 3 6 7 10 | 0 = 0: 0 0 1 2 3 6 7 11 | 0 11 = 0: 0 11 = 11: 0 1 0 1 2 4 5 6 11 | 11 = 11: 0 0 1 2 4 5 7 11 | 4 = 4: 0 0 1 2 4 6 7 11 | 11 = 11: 0 0 1 3 4 5 7 10 | 0 = 0: 0 0 1 3 4 5 7 11 | 0 4 = 0: 0 4 = 4: 0 8 0 1 3 4 6 7 10 | 0 3 = 0: 0 3 = 3: 0 9 0 1 3 4 6 7 11 | 0 = 0: 0 0 2 3 4 5 6 10 | 3 = 3: 0 0 2 3 4 5 6 11 | 11 = 11: 0 0 2 3 4 5 7 11 | 4 = 4: 0 0 2 3 4 6 7 10 = 7/9/#9/#11 | 3 = 3: 0 0 2 3 4 6 7 11 | 11 = 11: 0 Scale Degrees: 1223467 0 1 2 3 5 9 10 | 2 = 2: 0 0 1 2 3 5 9 11 | 2 = 2: 0 0 1 3 4 5 10 11 | 10 = 10: 0 0 2 3 4 5 9 10 | 2 9 = 2: 0 7 = 9: 0 5 Scale Degrees: 1223566 0 1 2 3 7 8 9 | 0 = 0: 0 0 1 2 4 7 8 9 | 1 = 1: 0 0 1 3 4 7 8 9 | 0 = 0: 0 Scale Degrees: 1223567 0 1 2 3 6 10 11 | 11 = 11: 0 0 1 2 3 7 8 10 | 0 7 = 0: 0 7 = 7: 0 5 0 1 2 3 7 8 11 | 0 = 0: 0 0 1 2 3 7 9 10 | 0 = 0: 0 0 1 2 3 7 9 11 | 0 = 0: 0 0 1 2 3 7 10 11 | 0 = 0: 0 0 1 2 4 6 10 11 | 11 = 11: 0 0 1 2 4 7 8 10 | 1 7 = 1: 0 6 = 7: 0 6 0 1 2 4 7 8 11 | 1 = 1: 0 0 1 2 4 7 9 10 | 9 = 9: 0 0 1 2 4 8 10 11 | 1 = 1: 0 0 1 3 4 6 10 11 | 3 = 3: 0 0 1 3 4 7 8 10 = Shostakovitch, alt. scale | 0 = 0: 0 0 1 3 4 7 8 11 | 0 = 0: 0 0 1 3 4 7 9 10 | 0 9 = 0: 0 9 = 9: 0 3 0 1 3 4 7 9 11 | 0 = 0: 0 0 1 3 4 7 10 11 | 0 = 0: 0 0 2 3 4 6 10 11 | 3 11 = 3: 0 8 = 11: 0 4 0 2 3 4 7 8 10 = sabach | 7 = 7: 0 0 2 3 4 7 9 10 | 9 = 9: 0 0 2 3 4 8 9 11 | 8 = 8: 0 Scale Degrees: 1223667 0 1 2 4 9 10 11 | 9 = 9: 0 0 1 3 4 9 10 11 | 9 = 9: 0 0 2 3 4 9 10 11 | 9 = 9: 0 Scale Degrees: 1224567 0 1 2 5 7 8 10 = Ratnangi | 7 = 7: 0 0 1 2 5 7 10 11 = Tanarupi | 10 = 10: 0 0 1 2 6 7 8 10 = Jalarnavam | 7 = 7: 0 0 1 2 6 7 8 11 = Jhalavarali | 11 = 11: 0 0 1 2 6 7 9 10 = Navaneetam | 6 = 6: 0 0 1 2 6 7 9 11 = Pavani | 6 11 = 6: 0 5 = 11: 0 7 0 1 2 6 7 10 11 = Raghupriya | 11 = 11: 0 Scale Degrees: 1225667 0 1 2 7 8 9 10 | 7 = 7: 0 0 1 2 7 8 10 11 | 7 = 7: 0 Scale Degrees: 1234456 0 1 3 5 6 7 8 | 0 5 = 0: 0 5 = 5: 0 7 0 1 4 5 6 7 8 | 5 = 5: 0 0 1 4 5 6 7 9 | 6 = 6: 0 0 2 3 5 6 7 8 | 5 = 5: 0 0 2 3 5 6 7 9 | 2 = 2: 0 0 2 4 5 6 7 8 | 5 = 5: 0 0 3 4 5 6 7 8 | 5 = 5: 0 Scale Degrees: 1234457 0 1 3 5 6 7 10 | 0 = 0: 0 0 1 3 5 6 7 11 | 0 = 0: 0 0 1 4 5 6 7 11 | 4 = 4: 0 0 2 3 5 6 7 11 | 11 = 11: 0 0 2 4 5 6 7 11 | 4 11 = 4: 0 7 = 11: 0 5 0 3 4 5 6 7 10 | 3 = 3: 0 0 3 4 5 6 7 11 | 4 = 4: 0 Scale Degrees: 1234566 0 1 3 5 7 8 9 = Senavati | 0 = 0: 0 0 1 3 6 7 8 9 = Gavambhodi | 0 6 = 0: 0 6 = 6: 0 6 0 1 4 6 7 8 9 = Dhavalambari | 6 = 6: 0 0 2 3 5 7 8 9 = Jhankaradhwani | 2 = 2: 0 13th chords, diamorphic scales (Scale Degrees: 1234567) 0 1 3 5 6 8 10 = locrian, mb13b5b9, 7 in 4ths | 5 = 5: 0 0 1 3 5 6 8 11 = mMb13b5b9 | 5 = 5: 0 0 1 3 5 6 10 11 = mM#13b5b9 | 10 = 10: 0 0 1 3 5 7 8 10 = phrygian, mb13b9, ousak, pelog, In, Hanumatodi, bhairavi | 0 = 0: 0 0 1 3 5 7 8 11 = mMb13b9, Neapolitan min., harm. phrygian, Dhenuka | 0 = 0: 0 0 1 3 5 7 9 10 = m13b9, phrygidorian, assyrian, Natakapriya | 0 = 0: 0 0 1 3 5 7 9 11 = mM13b9, Neapolitan maj., phrygian maj., Kokilapriya | 0 = 0: 0 0 1 3 5 7 10 11 = mM#13b9, Rupavati | 0 10 = 0: 0 10 = 10: 0 2 0 1 3 5 8 9 11 = mM13#5b9 | 8 = 8: 0 0 1 3 5 8 10 11 = m#13#5b9 | 10 = 10: 0 0 1 3 6 7 8 10 = mb13b9#11, full pelog, Bhavapriya | 0 = 0: 0 0 1 3 6 7 8 11 = mMb13b9#11, Shubhapantuvarali, todi | 0 = 0: 0 0 1 3 6 7 9 10 = m13b9#11, Shadvidamargini | 0 6 = 0: 0 6 = 6: 0 6 0 1 3 6 7 9 11 = mM13b9#11, Suvarnangi | 0 6 = 0: 0 6 = 6: 0 6 0 1 3 6 7 10 11 = mM#13b9#11, Divyamani | 0 = 0: 0 0 1 3 6 8 9 11 = mM13b9#11 | 8 = 8: 0 0 1 4 5 6 8 10 = 7b13#5b9#11 | 5 = 5: 0 0 1 4 5 6 8 11 = M7b13#5b9#11, Persian | 5 = 5: 0 0 1 4 5 6 9 10 = 13b5b9, oriental, tsinganikos, Persian, tsinganikos | 9 = 9: 0 0 1 4 5 6 10 11 = M#13b5b9 | 10 = 10: 0 0 1 4 5 7 8 11 = M#13b9, double harm. maj., hijazkiar, Mayamalavagowla, bhairav | 4 = 4: 0 0 1 4 5 7 9 10 = 13b9, neapolitan mixolydian, Chakravakam | 9 = 9: 0 0 1 4 5 7 9 11 = M13b9, Suryakantam | 4 = 4: 0 0 1 4 5 7 10 11 = M#13b9, Hatakambari | 4 10 = 4: 0 6 = 10: 0 6 0 1 4 5 8 9 10 = 13#5b9 | 9 = 9: 0 0 1 4 5 8 10 11 = M#13#5b5, enigmatic ascending | 10 = 10: 0 0 1 4 6 7 9 10 = 13b9#11, Ramapriya | 6 9 = 6: 0 3 = 9: 0 9 0 1 4 6 7 9 11 = M13b9#11, Gamanasrama, marwa | 6 = 6: 0 0 1 4 6 8 9 10 = 13#4b9#11 | 9 = 9: 0 0 2 3 5 6 8 10 = 7b13b5, aeolocrian, half-dim. scale, min. locr. | 5 = 5: 0 0 2 3 5 6 8 11 = mMb13b5, locrian min. | 5 11 = 5: 0 6 = 11: 0 6 0 2 3 5 6 9 10 = m13b5, doric locrian, kiordi asc. | 2 = 2: 0 0 2 3 5 6 9 11 = mM13#11 | 2 11 = 2: 0 9 = 11: 0 3 0 2 3 5 6 10 11 = mM#13 | 11 = 11: 0 0 2 3 5 7 8 10 = aeolian, mb13, kiordi desc., Natabhairavi, asavari | 7 = 7: 0 0 2 3 5 7 9 10 = dorian, m13, ritsu, tomora mesengo, Kharaharapriya, khafi, 7TET, Thai | 2 = 2: 0 0 2 3 5 7 9 11 = mel. min., mM13, jazz min., Gourimanohari | 2 = 2: 0 0 2 3 5 8 9 10 = m13#5 | 2 = 2: 0 0 2 3 5 8 9 11 = mM13#5 | 2 8 = 2: 0 6 = 8: 0 6 0 2 3 6 7 8 10 = mb13#11, Gypsy, Hungarian min. I, Aeolean #4, Shanmukhapriya | 7 = 7: 0 0 2 3 6 7 8 11 = mMb13#11, hungarian/gypsy min., Egypt. scale, niaventi, Simhendramadhyamam | 11 = 11: 0 0 2 3 6 7 9 11 = mM13#11, lydian dim., Dharmavati | 11 = 11: 0 0 2 3 6 7 10 11 = mM#13#11, Neetimati, 2367AB & m7b5, 2367AB & m7 | 11 = 11: 0 0 2 3 6 8 9 11 = mM13#5#11 | 8 11 = 8: 0 3 = 11: 0 9 0 2 3 6 8 10 11 = mM#13#5#11 | 11 = 11: 0 0 2 4 5 6 8 10 = 7b13b5, Major Locrian | 5 = 5: 0 0 2 4 5 6 8 11 = M7b13b5 | 5 11 = 5: 0 6 = 11: 0 6 0 2 4 5 6 9 10 = 13b5 | 9 = 9: 0 0 2 4 5 6 9 11 = M13b5 | 11 = 11: 0 0 2 4 5 6 10 11 = M#13b5 | 11 = 11: 0 0 2 4 5 7 8 10 = 7b13, myxaeolian, Hindu, mel. maj. | 7 = 7: 0 0 2 4 5 7 8 11 = Mb13, Harmonic maj., Sarasangi, suzinak | 4 = 4: 0 0 2 4 5 7 9 10 = mixolydian, rast desc., jiharkah, Harikambhoji, khamaj | 9 = 9: 0 0 2 4 5 7 9 11 = maj. scale, ionian, M13, rast ascending, silaba, bilawal, Dheerasankarabaranam | 4 = 4: 0 0 2 4 5 7 10 11 = M#13, Naganandini | 4 = 4: 0 0 2 4 5 8 9 10 = 13#5 | 9 = 9: 0 0 2 4 6 7 8 10 = 7b13#11, lydian min., Rishabhapriya | 7 = 7: 0 0 2 4 6 7 8 11 = Mb13#11, Latangi | 11 = 11: 0 0 2 4 6 7 9 10 = 13#11, lydian dominant, lydomyxian, overtone, Vachaspati | 9 = 9: 0 0 2 4 6 7 9 11 = M13#11, lydian, 7 in 5ths, sauta, Mechakalyani, kalyan | 11 = 11: 0 0 2 4 6 7 10 11 = M#13#11, Chitrambari | 11 = 11: 0 0 2 4 6 8 9 10 = 13#5#11 | 9 = 9: 0 0 2 4 6 8 9 11 = M13#5#11, lydian aug. | 11 = 11: 0 0 2 4 6 8 10 11 = M#11, leading whole tone | 11 = 11: 0 0 3 4 5 6 8 10 = 7b13b5#9 | 3 5 = 3: 0 2 = 5: 0 10 0 3 4 5 6 8 11 = M7b13b5#9 | 5 = 5: 0 0 3 4 5 6 9 10 = 13b5#9 | 3 9 = 3: 0 6 = 9: 0 6 0 3 4 5 6 10 11 = M#13b5#9 | 3 = 3: 0 0 3 4 5 7 8 11 = M7b13#9, houzam, Gangeyabhushani | 4 = 4: 0 0 3 4 5 7 9 10 = 13#9, Vagadheeswari, mixolydian #2 | 9 = 9: 0 0 3 4 5 7 9 11 = M13#9, Shulini | 4 = 4: 0 0 3 4 5 7 10 11 = M#13#9, Chalanata | 4 = 4: 0 0 3 4 5 8 9 10 = 13#5#9 | 9 = 9: 0 0 3 4 5 8 9 11 = M13#5#9, ionian #2 #5 | 8 = 8: 0 0 3 4 6 7 8 10 = mb13b5#9, Jyoti swarupini | 3 = 3: 0 0 3 4 6 7 9 10 = 13#9#11, Hungarian maj. I, Naasikabhushini | 3 9 = 3: 0 6 = 9: 0 6 0 3 4 6 7 10 11 = M#11#5#9, Rasikapriya | 3 = 3: 0 0 3 4 6 8 9 10 = 13#5#9 | 3 9 = 3: 0 6 = 9: 0 6 0 3 4 6 8 9 11 = mM13#5#9 | 8 = 8: 0 0 3 4 6 8 10 11 = mM#13#5#9#11 | 3 = 3: 0 Scale Degrees: 1234667 0 2 3 5 9 10 11 | 2 = 2: 0 0 3 4 5 9 10 11 | 9 = 9: 0 Scale Degrees: 1235667 0 1 3 7 8 9 10 | 0 = 0: 0 0 1 3 7 8 9 11 | 0 8 = 0: 0 8 = 8: 0 4 0 1 3 7 8 10 11 | 0 = 0: 0 0 1 3 7 9 10 11 | 0 = 0: 0 0 1 4 7 8 9 10 | 9 = 9: 0 0 1 4 7 9 10 11 | 9 = 9: 0 0 2 3 6 9 10 11 | 11 = 11: 0 0 2 3 7 8 9 10 | 7 = 7: 0 0 2 3 7 8 9 11 | 8 = 8: 0 0 2 3 7 8 10 11 | 7 = 7: 0 0 2 4 7 8 9 10 | 7 9 = 7: 0 2 = 9: 0 10 0 2 4 7 8 10 11 | 7 = 7: 0 0 2 4 7 9 10 11 | 9 = 9: 0 0 3 4 6 9 10 11 | 3 9 = 3: 0 6 = 9: 0 6 0 3 4 7 8 9 10 | 9 = 9: 0 0 3 4 7 8 9 11 | 8 = 8: 0 0 3 4 7 9 10 11 | 9 = 9: 0 0 3 4 8 9 10 11 | 8 9 = 8: 0 1 = 9: 0 11 Scale Degrees: 1244567 0 1 5 6 7 8 10 | 5 = 5: 0 0 1 5 6 7 10 11 | 10 = 10: 0 0 2 5 6 7 10 11 | 11 = 11: 0 Scale Degrees: 1245667 0 1 5 7 8 10 11 | 10 = 10: 0 0 1 6 7 8 9 10 | 6 = 6: 0 0 1 6 7 8 9 11 | 6 = 6: 0 0 2 5 7 8 9 10 | 7 = 7: 0 0 2 5 7 8 10 11 | 7 = 7: 0 0 2 6 7 8 9 10 | 7 = 7: 0 0 2 6 7 8 9 11 | 11 = 11: 0 0 2 6 7 8 10 11 | 7 11 = 7: 0 4 = 11: 0 8 Scale Degrees: 1245677 0 1 5 7 9 10 11 | 10 = 10: 0 0 1 6 7 9 10 11 | 6 = 6: 0 0 2 6 7 9 10 11 | 11 = 11: 0 Scale Degrees: 1256677 0 2 7 8 9 10 11 | 7 = 7: 0 Scale Degrees: 1344566 0 3 5 6 7 8 9 | 5 = 5: 0 0 4 5 6 7 8 9 | 5 = 5: 0 Scale Degrees: 1344567 0 3 5 6 7 8 10 | 5 = 5: 0 0 3 5 6 7 8 11 | 5 = 5: 0 0 4 5 6 7 8 10 | 5 = 5: 0 0 4 5 6 7 8 11 | 4 5 = 4: 0 1 = 5: 0 11 0 4 5 6 7 9 10 | 9 = 9: 0 0 4 5 6 7 9 11 | 4 = 4: 0 0 4 5 6 7 10 11 | 4 = 4: 0 Scale Degrees: 1345667 0 3 5 7 8 9 11 | 8 = 8: 0 0 3 6 7 8 9 11 | 8 = 8: 0 0 4 5 6 9 10 11 | 9 = 9: 0 0 4 5 7 8 9 10 | 9 = 9: 0 0 4 5 7 8 9 11 | 4 = 4: 0 0 4 5 7 8 10 11 | 4 = 4: 0 0 4 5 7 9 10 11 | 4 9 = 4: 0 5 = 9: 0 7 0 4 6 7 8 9 10 | 9 = 9: 0 0 4 6 7 9 10 11 | 9 = 9: 0 Scale Degrees: 1356677 0 3 7 8 9 10 11 | 8 = 8: 0 0 4 7 8 9 10 11 | 9 = 9: 0 chromatic octachord (Scale Degrees: 12223445) 0 1 2 3 4 5 6 7 = 1st 8 chromatics | 0 = 0: 0 Scale Degrees: 12223456 0 1 2 3 4 5 7 8 | 0 1 = 0: 0 1 = 1: 0 11 0 1 2 3 4 5 7 9 | 0 2 = 0: 0 2 = 2: 0 10 0 1 2 3 4 6 7 8 | 0 1 = 0: 0 1 = 1: 0 11 0 1 2 3 4 6 7 9 | 0 6 = 0: 0 6 = 6: 0 6 Scale Degrees: 12223457 0 1 2 3 4 5 7 10 | 0 = 0: 0 0 1 2 3 4 5 7 11 | 0 4 = 0: 0 4 = 4: 0 8 0 1 2 3 4 6 7 10 | 0 3 = 0: 0 3 = 3: 0 9 0 1 2 3 4 6 7 11 | 0 11 = 0: 0 11 = 11: 0 1 Scale Degrees: 12223566 0 1 2 3 4 7 8 9 | 0 1 = 0: 0 1 = 1: 0 11 Scale Degrees: 12223567 0 1 2 3 4 7 8 10 | 0 1 7 = 0: 0 1 7 = 1: 0 6 11 = 7: 0 5 6 0 1 2 3 4 7 8 11 | 0 1 = 0: 0 1 = 1: 0 11 0 1 2 3 4 7 9 10 | 0 9 = 0: 0 9 = 9: 0 3 0 1 2 3 4 7 9 11 | 0 = 0: 0 0 1 2 3 4 7 10 11 | 0 = 0: 0 0 1 2 3 4 8 10 11 | 1 = 1: 0 Scale Degrees: 12223667 0 1 2 3 4 9 10 11 | 9 = 9: 0 Scale Degrees: 12233457 0 1 2 3 4 5 6 10 | 3 = 3: 0 0 1 2 3 4 6 8 10 | 1 3 = 1: 0 2 = 3: 0 10 Scale Degrees: 12234456 0 1 2 3 5 6 7 9 | 0 2 6 = 0: 0 2 6 = 2: 0 4 10 = 6: 0 6 8 0 1 2 4 5 6 7 8 | 1 5 = 1: 0 4 = 5: 0 8 0 1 2 4 5 6 7 9 | 6 = 6: 0 0 1 3 4 5 6 7 8 | 0 5 = 0: 0 5 = 5: 0 7 0 1 3 4 5 6 7 9 | 0 6 = 0: 0 6 = 6: 0 6 Scale Degrees: 12234457 0 1 2 3 5 6 7 10 | 0 = 0: 0 0 1 2 3 5 6 7 11 | 0 11 = 0: 0 11 = 11: 0 1 0 1 2 4 5 6 7 11 | 4 11 = 4: 0 7 = 11: 0 5 0 1 3 4 5 6 7 10 | 0 3 = 0: 0 3 = 3: 0 9 0 1 3 4 5 6 7 11 | 0 4 = 0: 0 4 = 4: 0 8 0 2 3 4 5 6 7 10 | 3 = 3: 0 0 2 3 4 5 6 7 11 | 4 11 = 4: 0 7 = 11: 0 5 Scale Degrees: 12234566 0 1 2 3 5 7 8 9 | 0 2 = 0: 0 2 = 2: 0 10 0 1 2 3 6 7 8 9 | 0 6 = 0: 0 6 = 6: 0 6 0 1 2 4 5 7 8 9 | 1 = 1: 0 0 1 2 4 6 7 8 9 | 1 6 = 1: 0 5 = 6: 0 7 0 1 3 4 5 7 8 9 | 0 = 0: 0 0 1 3 4 6 7 8 9 | 0 6 = 0: 0 6 = 6: 0 6 0 2 3 4 5 7 8 9 | 2 = 2: 0 diamorphic with supplementary 2nd (Scale Degrees: 12234567) 0 1 2 3 5 6 8 10 | 5 = 5: 0 0 1 2 3 5 7 8 10 = aeophrygian | 0 7 = 0: 0 7 = 7: 0 5 0 1 2 3 5 7 8 11 | 0 = 0: 0 0 1 2 3 5 7 9 10 | 0 2 = 0: 0 2 = 2: 0 10 0 1 2 3 5 7 9 11 | 0 2 = 0: 0 2 = 2: 0 10 0 1 2 3 5 7 10 11 | 0 10 = 0: 0 10 = 10: 0 2 0 1 2 3 6 7 8 10 | 0 7 = 0: 0 7 = 7: 0 5 0 1 2 3 6 7 8 11 | 0 11 = 0: 0 11 = 11: 0 1 0 1 2 3 6 7 9 10 | 0 6 = 0: 0 6 = 6: 0 6 0 1 2 3 6 7 9 11 | 0 6 11 = 0: 0 6 11 = 6: 0 5 6 = 11: 0 1 7 0 1 2 3 6 7 10 11 | 0 11 = 0: 0 11 = 11: 0 1 0 1 2 4 5 7 8 10 | 1 7 = 1: 0 6 = 7: 0 6 0 1 2 4 5 7 8 11 | 1 4 = 1: 0 3 = 4: 0 9 0 1 2 4 5 7 9 10 | 9 = 9: 0 0 1 2 4 5 7 9 11 | 4 = 4: 0 0 1 2 4 5 7 10 11 | 4 10 = 4: 0 6 = 10: 0 6 0 1 2 4 6 7 8 10 | 1 7 = 1: 0 6 = 7: 0 6 0 1 2 4 6 7 8 11 | 1 11 = 1: 0 10 = 11: 0 2 0 1 2 4 6 7 9 10 | 6 9 = 6: 0 3 = 9: 0 9 0 1 2 4 6 7 9 11 = 8 in 5ths | 6 11 = 6: 0 5 = 11: 0 7 0 1 2 4 6 7 10 11 | 11 = 11: 0 0 1 2 4 6 8 10 11 | 1 11 = 1: 0 10 = 11: 0 2 0 1 3 4 5 6 9 10 | 3 9 = 3: 0 6 = 9: 0 6 0 1 3 4 5 7 8 10 = 8-tone Span. phrygian, Flamenco | 0 = 0: 0 0 1 3 4 5 7 8 11 | 0 4 = 0: 0 4 = 4: 0 8 0 1 3 4 5 7 9 10 | 0 9 = 0: 0 9 = 9: 0 3 0 1 3 4 5 7 9 11 | 0 4 = 0: 0 4 = 4: 0 8 0 1 3 4 5 7 10 11 | 0 4 10 = 0: 0 4 10 = 4: 0 6 8 = 10: 0 2 6 0 1 3 4 6 7 8 10 | 0 3 = 0: 0 3 = 3: 0 9 0 1 3 4 6 7 8 11 | 0 = 0: 0 0 1 3 4 6 7 9 10 = dim. scale, Octatonic | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 0 1 3 4 6 7 9 11 | 0 6 = 0: 0 6 = 6: 0 6 0 1 3 4 6 7 10 11 | 0 3 = 0: 0 3 = 3: 0 9 0 2 3 4 5 6 9 10 | 2 3 9 = 2: 0 1 7 = 3: 0 6 11 = 9: 0 5 6 0 2 3 4 5 6 10 11 | 3 11 = 3: 0 8 = 11: 0 4 0 2 3 4 5 7 8 10 | 7 = 7: 0 0 2 3 4 5 7 8 11 | 4 = 4: 0 0 2 3 4 5 7 9 10 = Bebop Dorian, mixodorian | 2 9 = 2: 0 7 = 9: 0 5 0 2 3 4 5 7 9 11 = ionian & mel. min. | 2 4 = 2: 0 2 = 4: 0 10 0 2 3 4 5 7 10 11 | 4 = 4: 0 0 2 3 4 6 7 8 10 | 3 7 = 3: 0 4 = 7: 0 8 0 2 3 4 6 7 8 11 | 11 = 11: 0 0 2 3 4 6 7 9 10 | 3 9 = 3: 0 6 = 9: 0 6 0 2 3 4 6 7 9 11 | 11 = 11: 0 0 2 3 4 6 7 10 11 = 2367AB & dom.7, 2367AB & M7 | 3 11 = 3: 0 8 = 11: 0 4 Scale Degrees: 12234667 0 1 3 4 5 9 10 11 | 9 10 = 9: 0 1 = 10: 0 11 Scale Degrees: 12235667 0 1 2 3 7 8 9 10 | 0 7 = 0: 0 7 = 7: 0 5 0 1 2 3 7 8 9 11 | 0 8 = 0: 0 8 = 8: 0 4 0 1 2 3 7 8 10 11 | 0 7 = 0: 0 7 = 7: 0 5 0 1 2 3 7 9 10 11 | 0 = 0: 0 0 1 2 4 7 8 9 10 | 1 7 9 = 1: 0 6 8 = 7: 0 2 6 = 9: 0 4 10 0 1 2 4 7 8 9 11 | 1 = 1: 0 0 1 2 4 7 8 10 11 | 1 7 = 1: 0 6 = 7: 0 6 0 1 2 4 7 9 10 11 | 9 = 9: 0 0 1 3 4 6 8 10 11 | 3 = 3: 0 0 1 3 4 6 9 10 11 | 3 9 = 3: 0 6 = 9: 0 6 0 1 3 4 7 8 9 10 = ultraphrygian | 0 9 = 0: 0 9 = 9: 0 3 0 1 3 4 7 8 9 11 | 0 8 = 0: 0 8 = 8: 0 4 0 1 3 4 7 8 10 11 | 0 = 0: 0 0 1 3 4 7 9 10 11 | 0 9 = 0: 0 9 = 9: 0 3 0 1 3 4 8 9 10 11 | 8 9 = 8: 0 1 = 9: 0 11 0 2 3 4 6 9 10 11 | 3 9 11 = 3: 0 6 8 = 9: 0 2 6 = 11: 0 4 10 0 2 3 4 7 8 9 10 | 7 9 = 7: 0 2 = 9: 0 10 0 2 3 4 7 8 9 11 | 8 = 8: 0 0 2 3 4 7 8 10 11 | 7 = 7: 0 0 2 3 4 7 9 10 11 | 9 = 9: 0 0 2 3 4 8 9 10 11 | 8 9 = 8: 0 1 = 9: 0 11 Scale Degrees: 12244566 0 1 2 5 6 7 8 9 | 5 6 = 5: 0 1 = 6: 0 11 Scale Degrees: 12244567 0 1 2 5 6 7 8 10 | 5 7 = 5: 0 2 = 7: 0 10 0 1 2 5 6 7 8 11 | 5 11 = 5: 0 6 = 11: 0 6 0 1 2 5 6 7 9 11 | 6 11 = 6: 0 5 = 11: 0 7 0 1 2 5 6 7 10 11 | 10 11 = 10: 0 1 = 11: 0 11 Scale Degrees: 12245667 0 1 2 5 7 8 10 11 | 7 10 = 7: 0 3 = 10: 0 9 0 1 2 5 7 9 10 11 | 10 = 10: 0 0 1 2 6 7 8 10 11 | 7 11 = 7: 0 4 = 11: 0 8 0 1 2 6 7 9 10 11 | 6 11 = 6: 0 5 = 11: 0 7 0 1 2 6 7 8 9 10 | 6 7 = 6: 0 1 = 7: 0 11 Scale Degrees: 12256677 0 1 2 7 8 9 10 11 | 7 = 7: 0 chromatic nonachord (Scale Degrees: 12344456) 0 2 3 4 5 6 7 8 | 5 = 5: 0 0 2 3 4 5 6 7 9 | 2 = 2: 0 Scale Degrees: 12344566 0 1 3 5 6 7 8 9 | 0 5 6 = 0: 0 5 6 = 5: 0 1 7 = 6: 0 6 11 0 2 3 5 6 7 8 9 | 2 5 = 2: 0 3 = 5: 0 9 diamorphic with supplementary 4th (Scale Degrees: 12344567) 0 1 3 5 6 7 8 11 | 0 5 = 0: 0 5 = 5: 0 7 0 1 3 5 6 7 9 10 | 0 6 = 0: 0 6 = 6: 0 6 0 1 3 5 6 7 9 11 | 0 6 = 0: 0 6 = 6: 0 6 0 1 3 5 6 7 10 11 | 0 10 = 0: 0 10 = 10: 0 2 0 1 4 5 6 7 8 9 | 5 6 = 5: 0 1 = 6: 0 11 0 1 4 5 6 7 8 10 | 5 = 5: 0 0 1 4 5 6 7 8 11 | 4 5 = 4: 0 1 = 5: 0 11 0 1 4 5 6 7 9 10 | 6 9 = 6: 0 3 = 9: 0 9 0 1 4 5 6 7 9 11 | 4 6 = 4: 0 2 = 6: 0 10 0 1 4 5 6 7 10 11 | 4 10 = 4: 0 6 = 10: 0 6 0 1 4 5 6 8 10 11 = Persian | 5 10 = 5: 0 5 = 10: 0 7 0 2 3 5 6 7 8 10 | 5 7 = 5: 0 2 = 7: 0 10 0 2 3 5 6 7 8 11 = Algerian | 5 11 = 5: 0 6 = 11: 0 6 0 2 3 5 6 7 9 10 | 2 = 2: 0 0 2 3 5 6 7 9 11 | 2 11 = 2: 0 9 = 11: 0 3 0 2 3 5 6 7 10 11 = 2367AB & min. pentat. | 11 = 11: 0 0 2 3 5 6 8 9 11 = dim. scale, Octatonic | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 0 2 4 5 6 7 8 10 | 5 7 = 5: 0 2 = 7: 0 10 0 2 4 5 6 7 8 11 | 4 5 11 = 4: 0 1 7 = 5: 0 6 11 = 11: 0 5 6 0 2 4 5 6 7 9 10 | 9 = 9: 0 0 2 4 5 6 7 9 11 = iolydian | 4 11 = 4: 0 7 = 11: 0 5 0 2 4 5 6 7 10 11 | 4 11 = 4: 0 7 = 11: 0 5 0 3 4 5 6 7 8 10 | 3 5 = 3: 0 2 = 5: 0 10 0 3 4 5 6 7 8 11 | 4 5 = 4: 0 1 = 5: 0 11 0 3 4 5 6 7 9 10 | 3 9 = 3: 0 6 = 9: 0 6 0 3 4 5 6 7 9 11 | 4 = 4: 0 0 3 4 5 6 7 10 11 | 3 4 = 3: 0 1 = 4: 0 11 diamorphic with supplementary 6th (Scale Degrees: 12345667) 0 1 3 5 6 9 10 11 | 10 = 10: 0 0 1 3 5 7 8 9 10 | 0 = 0: 0 0 1 3 5 7 8 9 11 | 0 8 = 0: 0 8 = 8: 0 4 0 1 3 5 7 8 10 11 | 0 10 = 0: 0 10 = 10: 0 2 0 1 3 5 7 9 10 11 | 0 10 = 0: 0 10 = 10: 0 2 0 1 3 6 7 8 9 10 | 0 6 = 0: 0 6 = 6: 0 6 0 1 3 6 7 8 9 11 | 0 6 8 = 0: 0 6 8 = 6: 0 2 6 = 8: 0 4 10 0 1 3 6 7 8 10 11 | 0 = 0: 0 0 1 3 6 7 9 10 11 | 0 6 = 0: 0 6 = 6: 0 6 0 1 4 5 7 8 9 10 = Gayakapriya, 014589 & dom.7 | 9 = 9: 0 0 1 4 5 7 8 9 11 = 014589 & M7 | 4 = 4: 0 0 1 4 5 7 8 10 11 = Vakulabharanam | 4 10 = 4: 0 6 = 10: 0 6 0 1 4 5 7 9 10 11 | 4 9 10 = 4: 0 5 6 = 9: 0 1 7 = 10: 0 6 11 0 1 4 6 7 8 9 10 | 6 9 = 6: 0 3 = 9: 0 9 0 1 4 6 7 8 9 11 | 6 = 6: 0 0 1 4 6 7 9 10 11 | 6 9 = 6: 0 3 = 9: 0 9 0 2 3 5 7 8 9 10 = aeodorian | 2 7 = 2: 0 5 = 7: 0 7 0 2 3 5 7 8 9 11 = Bebop mel. min. | 2 8 = 2: 0 6 = 8: 0 6 0 2 3 5 7 8 10 11 = Bebop harm. min. | 7 = 7: 0 0 2 3 5 7 9 10 11 = dorian & mel. min. | 2 = 2: 0 0 2 3 5 8 9 10 11 | 2 8 = 2: 0 6 = 8: 0 6 0 2 3 6 7 8 9 10 = Syamalangi | 7 = 7: 0 0 2 3 6 7 8 9 11 | 8 11 = 8: 0 3 = 11: 0 9 0 2 3 6 7 8 10 11 | 7 11 = 7: 0 4 = 11: 0 8 0 2 3 6 7 9 10 11 = Romanian min., Ukranian Dorian | 11 = 11: 0 0 2 4 5 6 9 10 11 | 9 11 = 9: 0 2 = 11: 0 10 0 2 4 5 7 8 9 10 = Mararanjani | 7 9 = 7: 0 2 = 9: 0 10 0 2 4 5 7 8 9 11 = bebop maj. | 4 = 4: 0 0 2 4 5 7 8 10 11 = Charukesi | 4 7 = 4: 0 3 = 7: 0 9 0 2 4 5 7 9 10 11 = bebop dominant, iomixolydian | 4 9 = 4: 0 5 = 9: 0 7 0 2 4 6 7 8 9 10 | 7 9 = 7: 0 2 = 9: 0 10 0 2 4 6 7 8 9 11 | 11 = 11: 0 0 2 4 6 7 8 10 11 | 7 11 = 7: 0 4 = 11: 0 8 0 2 4 6 7 9 10 11 | 9 11 = 9: 0 2 = 11: 0 10 0 3 4 5 6 9 10 11 | 3 9 = 3: 0 6 = 9: 0 6 0 3 4 5 7 8 9 10 = Yagapriya | 9 = 9: 0 0 3 4 5 7 8 9 11 | 4 8 = 4: 0 4 = 8: 0 8 0 3 4 5 7 8 10 11 | 4 = 4: 0 0 3 4 5 7 9 10 11 | 4 9 = 4: 0 5 = 9: 0 7 0 3 4 6 7 8 9 10 | 3 9 = 3: 0 6 = 9: 0 6 0 3 4 6 7 8 9 11 | 8 = 8: 0 0 3 4 6 7 8 10 11 | 3 = 3: 0 0 3 4 6 7 9 10 11 | 3 9 = 3: 0 6 = 9: 0 6 Scale Degrees: 12356677 0 1 3 7 8 9 10 11 | 0 8 = 0: 0 8 = 8: 0 4 0 1 4 7 8 9 10 11 | 9 = 9: 0 0 2 3 7 8 9 10 11 | 7 8 = 7: 0 1 = 8: 0 11 0 2 4 7 8 9 10 11 | 7 9 = 7: 0 2 = 9: 0 10 0 3 4 7 8 9 10 11 | 8 9 = 8: 0 1 = 9: 0 11 Scale Degrees: 12445667 0 1 5 6 7 9 10 11 | 6 10 = 6: 0 4 = 10: 0 8 0 2 5 6 7 8 9 10 | 5 7 = 5: 0 2 = 7: 0 10 0 2 5 6 7 8 10 11 | 5 7 11 = 5: 0 2 6 = 7: 0 4 10 = 11: 0 6 8 0 2 5 6 7 9 10 11 | 11 = 11: 0 Scale Degrees: 12456677 0 1 5 7 8 9 10 11 | 10 = 10: 0 0 1 6 7 8 9 10 11 | 6 = 6: 0 0 2 5 7 8 9 10 11 | 7 = 7: 0 0 2 6 7 8 9 10 11 | 7 11 = 7: 0 4 = 11: 0 8 Scale Degrees: 13445667 0 3 5 6 7 8 9 10 | 5 = 5: 0 0 3 5 6 7 8 9 11 | 5 8 = 5: 0 3 = 8: 0 9 0 3 5 6 7 8 10 11 | 5 = 5: 0 0 4 5 6 7 8 9 10 | 5 9 = 5: 0 4 = 9: 0 8 0 4 5 6 7 8 10 11 | 4 5 = 4: 0 1 = 5: 0 11 0 4 5 6 7 9 10 11 | 4 9 = 4: 0 5 = 9: 0 7 Scale Degrees: 13456677 0 3 5 7 8 9 10 11 | 8 = 8: 0 0 3 6 7 8 9 10 11 | 8 = 8: 0 0 4 5 7 8 9 10 11 | 4 9 = 4: 0 5 = 9: 0 7 0 4 6 7 8 9 10 11 | 9 = 9: 0 Scale Degrees: 122334456 0 1 2 3 4 5 6 7 8 = 1st 9chromatics | 0 1 5 = 0: 0 1 5 = 1: 0 4 11 = 5: 0 7 8 0 1 2 3 4 5 6 7 9 | 0 2 6 = 0: 0 2 6 = 2: 0 4 10 = 6: 0 6 8 Scale Degrees: 122334457 0 1 2 3 4 5 6 7 10 | 0 3 = 0: 0 3 = 3: 0 9 0 1 2 3 4 5 6 7 11 | 0 4 11 = 0: 0 4 11 = 4: 0 7 8 = 11: 0 1 5 Scale Degrees: 122334566 0 1 2 3 4 5 7 8 9 | 0 1 2 = 0: 0 1 2 = 1: 0 1 11 = 2: 0 10 11 0 1 2 3 4 6 7 8 9 | 0 1 6 = 0: 0 1 6 = 1: 0 5 11 = 6: 0 6 7 diamorphic with supplementary 2nd, 3rd (Scale Degrees: 122334567) 0 1 2 3 4 5 6 8 10 = whole tone & locrian | 1 3 5 = 1: 0 2 4 = 3: 0 2 10 = 5: 0 8 10 0 1 2 3 4 5 6 9 10 | 2 3 9 = 2: 0 1 7 = 3: 0 6 11 = 9: 0 5 6 0 1 2 3 4 5 7 8 10 | 0 1 7 = 0: 0 1 7 = 1: 0 6 11 = 7: 0 5 6 0 1 2 3 4 5 7 8 11 | 0 1 4 = 0: 0 1 4 = 1: 0 3 11 = 4: 0 8 9 0 1 2 3 4 5 7 9 10 | 0 2 9 = 0: 0 2 9 = 2: 0 7 10 = 9: 0 3 5 0 1 2 3 4 5 7 9 11 | 0 2 4 = 0: 0 2 4 = 2: 0 2 10 = 4: 0 8 10 0 1 2 3 4 5 7 10 11 | 0 4 10 = 0: 0 4 10 = 4: 0 6 8 = 10: 0 2 6 0 1 2 3 4 6 7 8 10 | 0 1 3 7 = 0: 0 1 3 7 = 1: 0 2 6 11 = 3: 0 4 9 10 = 7: 0 5 6 8 0 1 2 3 4 6 7 8 11 | 0 1 11 = 0: 0 1 11 = 1: 0 10 11 = 11: 0 1 2 0 1 2 3 4 6 7 9 10 | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 0 1 2 3 4 6 7 9 11 | 0 6 11 = 0: 0 6 11 = 6: 0 5 6 = 11: 0 1 7 0 1 2 3 4 6 7 10 11 | 0 3 11 = 0: 0 3 11 = 3: 0 8 9 = 11: 0 1 4 0 1 2 3 4 6 8 10 11 | 1 3 11 = 1: 0 2 10 = 3: 0 8 10 = 11: 0 2 4 Scale Degrees: 122335667 0 1 2 3 4 7 8 9 10 | 0 1 7 9 = 0: 0 1 7 9 = 1: 0 6 8 11 = 7: 0 2 5 6 = 9: 0 3 4 10 0 1 2 3 4 7 8 9 11 | 0 1 8 = 0: 0 1 8 = 1: 0 7 11 = 8: 0 4 5 0 1 2 3 4 7 8 10 11 | 0 1 7 = 0: 0 1 7 = 1: 0 6 11 = 7: 0 5 6 0 1 2 3 4 7 9 10 11 | 0 9 = 0: 0 9 = 9: 0 3 Scale Degrees: 122344566 0 1 2 3 5 6 7 8 9 | 0 2 5 6 = 0: 0 2 5 6 = 2: 0 3 4 10 = 5: 0 1 7 9 = 6: 0 6 8 11 0 1 2 4 5 6 7 8 9 | 1 5 6 = 1: 0 4 5 = 5: 0 1 8 = 6: 0 7 11 0 2 3 4 5 6 7 8 9 | 2 5 = 2: 0 3 = 5: 0 9 diamorphic with supplementary 2nd, 4th (Scale Degrees: 122344567) 0 1 2 3 5 6 7 8 10 | 0 5 7 = 0: 0 5 7 = 5: 0 2 7 = 7: 0 5 10 0 1 2 3 5 6 7 8 11 | 0 5 11 = 0: 0 5 11 = 5: 0 6 7 = 11: 0 1 6 0 1 2 3 5 6 7 9 10 = 12569A & m7, 12569A & min. pentat. | 0 2 6 = 0: 0 2 6 = 2: 0 4 10 = 6: 0 6 8 0 1 2 3 5 6 7 9 11 | 0 2 6 11 = 0: 0 2 6 11 = 2: 0 4 9 10 = 6: 0 5 6 8 = 11: 0 1 3 7 0 1 2 3 5 6 7 10 11 | 0 10 11 = 0: 0 10 11 = 10: 0 1 2 = 11: 0 1 11 0 1 2 3 5 6 8 9 11 | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 0 1 2 4 5 6 7 8 10 | 1 5 7 = 1: 0 4 6 = 5: 0 2 8 = 7: 0 6 10 0 1 2 4 5 6 7 8 11 | 1 4 5 11 = 1: 0 3 4 10 = 4: 0 1 7 9 = 5: 0 6 8 11 = 11: 0 2 5 6 0 1 2 4 5 6 7 9 10 = 12569A & dom. 7 | 6 9 = 6: 0 3 = 9: 0 9 0 1 2 4 5 6 7 9 11 | 4 6 11 = 4: 0 2 7 = 6: 0 5 10 = 11: 0 5 7 0 1 2 4 5 6 7 10 11 | 4 10 11 = 4: 0 6 7 = 10: 0 1 6 = 11: 0 5 11 0 1 3 4 5 6 7 8 10 | 0 3 5 = 0: 0 3 5 = 3: 0 2 9 = 5: 0 7 10 0 1 3 4 5 6 7 8 11 | 0 4 5 = 0: 0 4 5 = 4: 0 1 8 = 5: 0 7 11 0 1 3 4 5 6 7 9 10 | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 0 1 3 4 5 6 7 9 11 | 0 4 6 = 0: 0 4 6 = 4: 0 2 8 = 6: 0 6 10 0 1 3 4 5 6 7 10 11 | 0 3 4 10 = 0: 0 3 4 10 = 3: 0 1 7 9 = 4: 0 6 8 11 = 10: 0 2 5 6 0 2 3 4 5 6 7 8 10 = whole tone & aeolean | 3 5 7 = 3: 0 2 4 = 5: 0 2 10 = 7: 0 8 10 0 2 3 4 5 6 7 8 11 | 4 5 11 = 4: 0 1 7 = 5: 0 6 11 = 11: 0 5 6 0 2 3 4 5 6 7 9 10 | 2 3 9 = 2: 0 1 7 = 3: 0 6 11 = 9: 0 5 6 0 2 3 4 5 6 7 9 11 = lydian & mel. min. | 2 4 11 = 2: 0 2 9 = 4: 0 7 10 = 11: 0 3 5 0 2 3 4 5 6 7 10 11 | 3 4 11 = 3: 0 1 8 = 4: 0 7 11 = 11: 0 4 5 diamorphic with supplementary 2nd, 6th (Scale Degrees: 122345667) 0 1 2 3 5 7 8 9 10 = phrygidorian | 0 2 7 = 0: 0 2 7 = 2: 0 5 10 = 7: 0 5 7 0 1 2 3 5 7 8 9 11 | 0 2 8 = 0: 0 2 8 = 2: 0 6 10 = 8: 0 4 6 0 1 2 3 5 7 8 10 11 = phrygian & harm. min. | 0 7 10 = 0: 0 7 10 = 7: 0 3 5 = 10: 0 2 9 0 1 2 3 5 7 9 10 11 | 0 2 10 = 0: 0 2 10 = 2: 0 8 10 = 10: 0 2 4 0 1 2 3 6 7 8 9 10 | 0 6 7 = 0: 0 6 7 = 6: 0 1 6 = 7: 0 5 11 0 1 2 3 6 7 8 9 11 | 0 6 8 11 = 0: 0 6 8 11 = 6: 0 2 5 6 = 8: 0 3 4 10 = 11: 0 1 7 9 0 1 2 3 6 7 8 10 11 | 0 7 11 = 0: 0 7 11 = 7: 0 4 5 = 11: 0 1 8 0 1 2 3 6 7 9 10 11 | 0 6 11 = 0: 0 6 11 = 6: 0 5 6 = 11: 0 1 7 0 1 2 4 5 7 8 9 10 | 1 7 9 = 1: 0 6 8 = 7: 0 2 6 = 9: 0 4 10 0 1 2 4 5 7 8 9 11 | 1 4 = 1: 0 3 = 4: 0 9 0 1 2 4 5 7 8 10 11 | 1 4 7 10 = 1: 0 3 6 9 = 4: 0 3 6 9 = 7: 0 3 6 9 = 10: 0 3 6 9 0 1 2 4 5 7 9 10 11 | 4 9 10 = 4: 0 5 6 = 9: 0 1 7 = 10: 0 6 11 0 1 2 4 6 7 8 9 10 | 1 6 7 9 = 1: 0 5 6 8 = 6: 0 1 3 7 = 7: 0 2 6 11 = 9: 0 4 9 10 0 1 2 4 6 7 8 9 11 = 9 in 5ths | 1 6 11 = 1: 0 5 10 = 6: 0 5 7 = 11: 0 2 7 0 1 2 4 6 7 8 10 11 | 1 7 11 = 1: 0 6 10 = 7: 0 4 6 = 11: 0 2 8 0 1 2 4 6 7 9 10 11 | 6 9 11 = 6: 0 3 5 = 9: 0 2 9 = 11: 0 7 10 0 1 3 4 5 7 8 9 10 = 014589 & min. pentat. | 0 9 = 0: 0 9 = 9: 0 3 0 1 3 4 5 7 8 9 11 = tcherpnin enneatonic | 0 4 8 = 0: 0 4 8 = 4: 0 4 8 = 8: 0 4 8 0 1 3 4 5 7 8 10 11 = phrygian & aug. scale | 0 4 10 = 0: 0 4 10 = 4: 0 6 8 = 10: 0 2 6 0 1 3 4 5 7 9 10 11 | 0 4 9 10 = 0: 0 4 9 10 = 4: 0 5 6 8 = 9: 0 1 3 7 = 10: 0 2 6 11 0 1 3 4 6 7 8 9 10 | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 0 1 3 4 6 7 8 9 11 | 0 6 8 = 0: 0 6 8 = 6: 0 2 6 = 8: 0 4 10 0 1 3 4 6 7 8 10 11 | 0 3 = 0: 0 3 = 3: 0 9 0 1 3 4 6 7 9 10 11 | 0 3 6 9 = 0: 0 3 6 9 = 3: 0 3 6 9 = 6: 0 3 6 9 = 9: 0 3 6 9 0 2 3 4 5 6 9 10 11 | 2 3 9 11 = 2: 0 1 7 9 = 3: 0 6 8 11 = 9: 0 2 5 6 = 11: 0 3 4 10 0 2 3 4 5 7 8 9 10 = mixaeolean | 2 7 9 = 2: 0 5 7 = 7: 0 2 7 = 9: 0 5 10 0 2 3 4 5 7 8 9 11 = ionian & harm. min. | 2 4 8 = 2: 0 2 6 = 4: 0 4 10 = 8: 0 6 8 0 2 3 4 5 7 8 10 11 = aeolean & aug. scale, 03478B & bebop min. | 4 7 = 4: 0 3 = 7: 0 9 0 2 3 4 5 7 9 10 11 = iodorian, mixolydian & mel. min. | 2 4 9 = 2: 0 2 7 = 4: 0 5 10 = 9: 0 5 7 0 2 3 4 6 7 8 9 10 | 3 7 9 = 3: 0 4 6 = 7: 0 2 8 = 9: 0 6 10 0 2 3 4 6 7 8 9 11 = lydian & aug. scale | 8 11 = 8: 0 3 = 11: 0 9 0 2 3 4 6 7 8 10 11 = 2367AB & 048 | 3 7 11 = 3: 0 4 8 = 7: 0 4 8 = 11: 0 4 8 0 2 3 4 6 7 9 10 11 | 3 9 11 = 3: 0 6 8 = 9: 0 2 6 = 11: 0 4 10 Scale Degrees: 122356677 0 1 3 4 7 8 9 10 11 | 0 8 9 = 0: 0 8 9 = 8: 0 1 4 = 9: 0 3 11 0 2 3 4 7 8 9 10 11 | 7 8 9 = 7: 0 1 2 = 8: 0 1 11 = 9: 0 10 11 Scale Degrees: 122456677 0 1 2 5 7 8 9 10 11 = Kanakangi | 7 10 = 7: 0 3 = 10: 0 9 0 1 2 6 7 8 9 10 11 | 6 7 11 = 6: 0 1 5 = 7: 0 4 11 = 11: 0 7 8 Scale Degrees: 123356677 0 1 2 3 7 8 9 10 11 | 0 7 8 = 0: 0 7 8 = 7: 0 1 5 = 8: 0 4 11 0 1 2 4 7 8 9 10 11 | 1 7 9 = 1: 0 6 8 = 7: 0 2 6 = 9: 0 4 10 diamorphic with supplementary 4th, 6th (Scale Degrees: 123445667) 0 1 3 5 6 7 8 9 10 | 0 5 6 = 0: 0 5 6 = 5: 0 1 7 = 6: 0 6 11 0 1 3 5 6 7 8 9 11 | 0 5 6 8 = 0: 0 5 6 8 = 5: 0 1 3 7 = 6: 0 2 6 11 = 8: 0 4 9 10 0 1 4 5 6 7 8 9 10 | 5 6 9 = 5: 0 1 4 = 6: 0 3 11 = 9: 0 8 9 0 1 4 5 6 7 8 9 11 | 4 5 6 = 4: 0 1 2 = 5: 0 1 11 = 6: 0 10 11 0 2 3 5 6 7 8 9 10 | 2 5 7 = 2: 0 3 5 = 5: 0 2 9 = 7: 0 7 10 0 2 3 5 6 7 8 9 11 | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 0 2 3 5 6 8 9 10 11 | 2 5 8 11 = 2: 0 3 6 9 = 5: 0 3 6 9 = 8: 0 3 6 9 = 11: 0 3 6 9 0 2 4 5 6 7 8 9 10 = whole tone & mixolydian | 5 7 9 = 5: 0 2 4 = 7: 0 2 10 = 9: 0 8 10 0 2 4 5 6 7 8 9 11 | 4 5 11 = 4: 0 1 7 = 5: 0 6 11 = 11: 0 5 6 diamorphic with supplementary 4th, 7th (Scale Degrees: 123445677) 0 1 3 5 6 7 9 10 11 | 0 6 10 = 0: 0 6 10 = 6: 0 4 6 = 10: 0 2 8 0 1 4 5 6 7 8 10 11 | 4 5 10 = 4: 0 1 6 = 5: 0 5 11 = 10: 0 6 7 0 1 4 5 6 7 9 10 11 | 4 6 9 10 = 4: 0 2 5 6 = 6: 0 3 4 10 = 9: 0 1 7 9 = 10: 0 6 8 11 0 2 3 5 6 7 8 10 11 = 2367AB & bebop min. | 5 7 11 = 5: 0 2 6 = 7: 0 4 10 = 11: 0 6 8 0 2 3 5 6 7 9 10 11 = 2367AB & mel. min. | 2 11 = 2: 0 9 = 11: 0 3 0 2 4 5 6 7 8 10 11 | 4 5 7 11 = 4: 0 1 3 7 = 5: 0 2 6 11 = 7: 0 4 9 10 = 11: 0 5 6 8 0 2 4 5 6 7 9 10 11 = lydiomixlydian, full ryo | 4 9 11 = 4: 0 5 7 = 9: 0 2 7 = 11: 0 5 10 0 3 4 5 6 7 8 9 10 | 3 5 9 = 3: 0 2 6 = 5: 0 4 10 = 9: 0 6 8 0 3 4 5 6 7 8 9 11 | 4 5 8 = 4: 0 1 4 = 5: 0 3 11 = 8: 0 8 9 0 3 4 5 6 7 8 10 11 | 3 4 5 = 3: 0 1 2 = 4: 0 1 11 = 5: 0 10 11 0 3 4 5 6 7 9 10 11 | 3 4 9 = 3: 0 1 6 = 4: 0 5 11 = 9: 0 6 7 diamorphic with supplementary 6th, 7th (Scale Degrees: 123456677) 0 1 3 5 7 8 9 10 11 | 0 8 10 = 0: 0 8 10 = 8: 0 2 4 = 10: 0 2 10 0 1 3 6 7 8 9 10 11 | 0 6 8 = 0: 0 6 8 = 6: 0 2 6 = 8: 0 4 10 0 1 4 5 7 8 9 10 11 | 4 9 10 = 4: 0 5 6 = 9: 0 1 7 = 10: 0 6 11 0 1 4 6 7 8 9 10 11 | 6 9 = 6: 0 3 = 9: 0 9 0 2 3 5 7 8 9 10 11 = dorian & harm. min., aeolean & mel. min. | 2 7 8 = 2: 0 5 6 = 7: 0 1 7 = 8: 0 6 11 0 2 3 6 7 8 9 10 11 | 7 8 11 = 7: 0 1 4 = 8: 0 3 11 = 11: 0 8 9 0 2 4 5 7 8 9 10 11 | 4 7 9 = 4: 0 3 5 = 7: 0 2 9 = 9: 0 7 10 0 2 4 6 7 8 9 10 11 = whole tone & lydian | 7 9 11 = 7: 0 2 4 = 9: 0 2 10 = 11: 0 8 10 0 3 4 5 7 8 9 10 11 | 4 8 9 = 4: 0 4 5 = 8: 0 1 8 = 9: 0 7 11 0 3 4 6 7 8 9 10 11 | 3 8 9 = 3: 0 5 6 = 8: 0 1 7 = 9: 0 6 11 Scale Degrees: 134456667 0 3 5 6 7 8 9 10 11 | 5 8 = 5: 0 3 = 8: 0 9 Scale Degrees: 134456677 0 4 5 6 7 8 9 10 11 | 4 5 9 = 4: 0 1 5 = 5: 0 4 11 = 9: 0 7 8 chromatic decachord (Scale Degrees: 1223344566) 0 1 2 3 4 5 6 7 8 9 = 1st 10 chromatics | 0 1 2 5 6 = 0: 0 1 2 5 6 = 1: 0 1 4 5 11 = 2: 0 3 4 10 11 = 5: 0 1 7 8 9 = 6: 0 6 7 8 11 diamorphic with supplementary 2nd, 3rd, 4th (Scale Degrees: 1223344567) 0 1 2 3 4 5 6 7 8 10 = whole tone & phrygian | 0 1 3 5 7 = 0: 0 1 3 5 7 = 1: 0 2 4 6 11 = 3: 0 2 4 9 10 = 5: 0 2 7 8 10 = 7: 0 5 6 8 10 0 1 2 3 4 5 6 7 8 11 | 0 1 4 5 11 = 0: 0 1 4 5 11 = 1: 0 3 4 10 11 = 4: 0 1 7 8 9 = 5: 0 6 7 8 11 = 11: 0 1 2 5 6 0 1 2 3 4 5 6 7 9 10 = auxdim. scale & dorian | 0 2 3 6 9 = 0: 0 2 3 6 9 = 2: 0 1 4 7 10 = 3: 0 3 6 9 11 = 6: 0 3 6 8 9 = 9: 0 3 5 6 9 0 1 2 3 4 5 6 7 9 11 | 0 2 4 6 11 = 0: 0 2 4 6 11 = 2: 0 2 4 9 10 = 4: 0 2 7 8 10 = 6: 0 5 6 8 10 = 11: 0 1 3 5 7 0 1 2 3 4 5 6 7 10 11 | 0 3 4 10 11 = 0: 0 3 4 10 11 = 3: 0 1 7 8 9 = 4: 0 6 7 8 11 = 10: 0 1 2 5 6 = 11: 0 1 4 5 11 diamorphic with supplementary 2nd, 3rd, 6th (Scale Degrees: 1223345667) 0 1 2 3 4 5 6 8 9 10 | 1 2 3 5 9 = 1: 0 1 2 4 8 = 2: 0 1 3 7 11 = 3: 0 2 6 10 11 = 5: 0 4 8 9 10 = 9: 0 4 5 6 8 0 1 2 3 4 5 6 8 9 11 | 1 2 5 8 11 = 1: 0 1 4 7 10 = 2: 0 3 6 9 11 = 5: 0 3 6 8 9 = 8: 0 3 5 6 9 = 11: 0 2 3 6 9 0 1 2 3 4 5 6 8 10 11 | 1 3 5 10 11 = 1: 0 2 4 9 10 = 3: 0 2 7 8 10 = 5: 0 5 6 8 10 = 10: 0 1 3 5 7 = 11: 0 2 4 6 11 0 1 2 3 4 5 6 9 10 11 | 2 3 9 10 11 = 2: 0 1 7 8 9 = 3: 0 6 7 8 11 = 9: 0 1 2 5 6 = 10: 0 1 4 5 11 = 11: 0 3 4 10 11 0 1 2 3 4 5 7 8 9 10 = mixophrygian | 0 1 2 7 9 = 0: 0 1 2 7 9 = 1: 0 1 6 8 11 = 2: 0 5 7 10 11 = 7: 0 2 5 6 7 = 9: 0 3 4 5 10 0 1 2 3 4 5 7 8 9 11 = 014589 & mel. min. | 0 1 2 4 8 = 0: 0 1 2 4 8 = 1: 0 1 3 7 11 = 2: 0 2 6 10 11 = 4: 0 4 8 9 10 = 8: 0 4 5 6 8 0 1 2 3 4 5 7 8 10 11 | 0 1 4 7 10 = 0: 0 1 4 7 10 = 1: 0 3 6 9 11 = 4: 0 3 6 8 9 = 7: 0 3 5 6 9 = 10: 0 2 3 6 9 0 1 2 3 4 5 7 9 10 11 | 0 2 4 9 10 = 0: 0 2 4 9 10 = 2: 0 2 7 8 10 = 4: 0 5 6 8 10 = 9: 0 1 3 5 7 = 10: 0 2 4 6 11 0 1 2 3 4 5 8 9 10 11 | 1 2 8 9 10 = 1: 0 1 7 8 9 = 2: 0 6 7 8 11 = 8: 0 1 2 5 6 = 9: 0 1 4 5 11 = 10: 0 3 4 10 11 0 1 2 3 4 6 7 8 9 10 | 0 1 3 6 7 9 = 0: 0 1 3 6 7 9 = 1: 0 2 5 6 8 11 = 3: 0 3 4 6 9 10 = 6: 0 1 3 6 7 9 = 7: 0 2 5 6 8 11 = 9: 0 3 4 6 9 10 0 1 2 3 4 6 7 8 9 11 = 10 in 5ths | 0 1 6 8 11 = 0: 0 1 6 8 11 = 1: 0 5 7 10 11 = 6: 0 2 5 6 7 = 8: 0 3 4 5 10 = 11: 0 1 2 7 9 0 1 2 3 4 6 7 8 10 11 | 0 1 3 7 11 = 0: 0 1 3 7 11 = 1: 0 2 6 10 11 = 3: 0 4 8 9 10 = 7: 0 4 5 6 8 = 11: 0 1 2 4 8 0 1 2 3 4 6 7 9 10 11 = auxdim. scale & lydian | 0 3 6 9 11 = 0: 0 3 6 9 11 = 3: 0 3 6 8 9 = 6: 0 3 5 6 9 = 9: 0 2 3 6 9 = 11: 0 1 4 7 10 0 1 2 3 4 6 8 9 10 11 | 1 3 8 9 11 = 1: 0 2 7 8 10 = 3: 0 5 6 8 10 = 8: 0 1 3 5 7 = 9: 0 2 4 6 11 = 11: 0 2 4 9 10 Scale Degrees: 1223356667 0 1 2 3 4 7 8 9 10 11 | 0 1 7 8 9 = 0: 0 1 7 8 9 = 1: 0 6 7 8 11 = 7: 0 1 2 5 6 = 8: 0 1 4 5 11 = 9: 0 3 4 10 11 diamorphic with supplementary 2nd, 4th, 6th (Scale Degrees: 1223445667) 0 1 2 3 5 6 7 8 9 10 = locridorian | 0 2 5 6 7 = 0: 0 2 5 6 7 = 2: 0 3 4 5 10 = 5: 0 1 2 7 9 = 6: 0 1 6 8 11 = 7: 0 5 7 10 11 0 1 2 3 5 6 7 8 9 11 | 0 2 5 6 8 11 = 0: 0 2 5 6 8 11 = 2: 0 3 4 6 9 10 = 5: 0 1 3 6 7 9 = 6: 0 2 5 6 8 11 = 8: 0 3 4 6 9 10 = 11: 0 1 3 6 7 9 0 1 2 3 5 6 7 8 10 11 = locrian & harm. min. | 0 5 7 10 11 = 0: 0 5 7 10 11 = 5: 0 2 5 6 7 = 7: 0 3 4 5 10 = 10: 0 1 2 7 9 = 11: 0 1 6 8 11 0 1 2 3 5 6 7 9 10 11 = 12569A & mel. min. | 0 2 6 10 11 = 0: 0 2 6 10 11 = 2: 0 4 8 9 10 = 6: 0 4 5 6 8 = 10: 0 1 2 4 8 = 11: 0 1 3 7 11 0 1 2 3 5 6 8 9 10 11 = dim. scale & locrian | 2 5 8 10 11 = 2: 0 3 6 8 9 = 5: 0 3 5 6 9 = 8: 0 2 3 6 9 = 10: 0 1 4 7 10 = 11: 0 3 6 9 11 0 1 2 4 5 6 7 8 9 10 | 1 5 6 7 9 = 1: 0 4 5 6 8 = 5: 0 1 2 4 8 = 6: 0 1 3 7 11 = 7: 0 2 6 10 11 = 9: 0 4 8 9 10 0 1 2 4 5 6 7 8 9 11 | 1 4 5 6 11 = 1: 0 3 4 5 10 = 4: 0 1 2 7 9 = 5: 0 1 6 8 11 = 6: 0 5 7 10 11 = 11: 0 2 5 6 7 0 1 2 4 5 6 7 8 10 11 | 1 4 5 7 10 11 = 1: 0 3 4 6 9 10 = 4: 0 1 3 6 7 9 = 5: 0 2 5 6 8 11 = 7: 0 3 4 6 9 10 = 10: 0 1 3 6 7 9 = 11: 0 2 5 6 8 11 0 1 2 4 5 6 7 9 10 11 = 12569A & bebop maj. | 4 6 9 10 11 = 4: 0 2 5 6 7 = 6: 0 3 4 5 10 = 9: 0 1 2 7 9 = 10: 0 1 6 8 11 = 11: 0 5 7 10 11 0 1 2 4 5 6 8 9 10 11 | 1 5 9 10 11 = 1: 0 4 8 9 10 = 5: 0 4 5 6 8 = 9: 0 1 2 4 8 = 10: 0 1 3 7 11 = 11: 0 2 6 10 11 0 1 3 4 5 6 7 8 9 10 = auxdim. scale & phrygian, 014589 & auxdim. scale | 0 3 5 6 9 = 0: 0 3 5 6 9 = 3: 0 2 3 6 9 = 5: 0 1 4 7 10 = 6: 0 3 6 9 11 = 9: 0 3 6 8 9 0 1 3 4 5 6 7 8 9 11 | 0 4 5 6 8 = 0: 0 4 5 6 8 = 4: 0 1 2 4 8 = 5: 0 1 3 7 11 = 6: 0 2 6 10 11 = 8: 0 4 8 9 10 0 1 3 4 5 6 7 8 10 11 = locrian & aug. scale | 0 3 4 5 10 = 0: 0 3 4 5 10 = 3: 0 1 2 7 9 = 4: 0 1 6 8 11 = 5: 0 5 7 10 11 = 10: 0 2 5 6 7 0 1 3 4 5 6 7 9 10 11 | 0 3 4 6 9 10 = 0: 0 3 4 6 9 10 = 3: 0 1 3 6 7 9 = 4: 0 2 5 6 8 11 = 6: 0 3 4 6 9 10 = 9: 0 1 3 6 7 9 = 10: 0 2 5 6 8 11 0 2 3 4 5 6 7 8 9 10 | 2 3 5 7 9 = 2: 0 1 3 5 7 = 3: 0 2 4 6 11 = 5: 0 2 4 9 10 = 7: 0 2 7 8 10 = 9: 0 5 6 8 10 0 2 3 4 5 6 7 8 9 11 = lydian & harm. min. | 2 4 5 8 11 = 2: 0 2 3 6 9 = 4: 0 1 4 7 10 = 5: 0 3 6 9 11 = 8: 0 3 6 8 9 = 11: 0 3 5 6 9 0 2 3 4 5 6 7 8 10 11 | 3 4 5 7 11 = 3: 0 1 2 4 8 = 4: 0 1 3 7 11 = 5: 0 2 6 10 11 = 7: 0 4 8 9 10 = 11: 0 4 5 6 8 0 2 3 4 5 6 7 9 10 11 = dorelydian, 2367AB & bebop maj. | 2 3 4 9 11 = 2: 0 1 2 7 9 = 3: 0 1 6 8 11 = 4: 0 5 7 10 11 = 9: 0 2 5 6 7 = 11: 0 3 4 5 10 0 2 3 4 5 6 8 9 10 11 | 2 3 5 8 9 11 = 2: 0 1 3 6 7 9 = 3: 0 2 5 6 8 11 = 5: 0 3 4 6 9 10 = 8: 0 1 3 6 7 9 = 9: 0 2 5 6 8 11 = 11: 0 3 4 6 9 10 diamorphic with supplementary 2nd, 6th, 7th (Scale Degrees: 1223456677) 0 1 2 3 5 7 8 9 10 11 = phrygian & mel. min. | 0 2 7 8 10 = 0: 0 2 7 8 10 = 2: 0 5 6 8 10 = 7: 0 1 3 5 7 = 8: 0 2 4 6 11 = 10: 0 2 4 9 10 0 1 2 3 6 7 8 9 10 11 | 0 6 7 8 11 = 0: 0 6 7 8 11 = 6: 0 1 2 5 6 = 7: 0 1 4 5 11 = 8: 0 3 4 10 11 = 11: 0 1 7 8 9 0 1 2 4 5 7 8 9 10 11 = 014589 & bebop maj., Span. Gypsy & ionian | 1 4 7 9 10 = 1: 0 3 6 8 9 = 4: 0 3 5 6 9 = 7: 0 2 3 6 9 = 9: 0 1 4 7 10 = 10: 0 3 6 9 11 0 1 2 4 6 7 8 9 10 11 | 1 6 7 9 11 = 1: 0 5 6 8 10 = 6: 0 1 3 5 7 = 7: 0 2 4 6 11 = 9: 0 2 4 9 10 = 11: 0 2 7 8 10 0 1 3 4 5 6 8 9 10 11 = 10 in 4ths | 3 5 8 9 10 = 3: 0 2 5 6 7 = 5: 0 3 4 5 10 = 8: 0 1 2 7 9 = 9: 0 1 6 8 11 = 10: 0 5 7 10 11 0 1 3 4 5 7 8 9 10 11 | 0 4 8 9 10 = 0: 0 4 8 9 10 = 4: 0 4 5 6 8 = 8: 0 1 2 4 8 = 9: 0 1 3 7 11 = 10: 0 2 6 10 11 0 1 3 4 6 7 8 9 10 11 = 03478B & auxdim. scale | 0 3 6 8 9 = 0: 0 3 6 8 9 = 3: 0 3 5 6 9 = 6: 0 2 3 6 9 = 8: 0 1 4 7 10 = 9: 0 3 6 9 11 0 2 3 4 5 7 8 9 10 11 = ioaeolean, mixolydian & harm. min. | 2 4 7 8 9 = 2: 0 2 5 6 7 = 4: 0 3 4 5 10 = 7: 0 1 2 7 9 = 8: 0 1 6 8 11 = 9: 0 5 7 10 11 0 2 3 4 6 7 8 9 10 11 | 3 7 8 9 11 = 3: 0 4 5 6 8 = 7: 0 1 2 4 8 = 8: 0 1 3 7 11 = 9: 0 2 6 10 11 = 11: 0 4 8 9 10 Scale Degrees: 1224456677 0 1 2 5 6 7 8 9 10 11 | 5 6 7 10 11 = 5: 0 1 2 5 6 = 6: 0 1 4 5 11 = 7: 0 3 4 10 11 = 10: 0 1 7 8 9 = 11: 0 6 7 8 11 diamorphic with supplementary 4th, 6th, 7th (Scale Degrees: 1234456677) 0 1 3 5 6 7 8 9 10 11 | 0 5 6 8 10 = 0: 0 5 6 8 10 = 5: 0 1 3 5 7 = 6: 0 2 4 6 11 = 8: 0 2 4 9 10 = 10: 0 2 7 8 10 0 1 4 5 6 7 8 9 10 11 | 4 5 6 9 10 = 4: 0 1 2 5 6 = 5: 0 1 4 5 11 = 6: 0 3 4 10 11 = 9: 0 1 7 8 9 = 10: 0 6 7 8 11 0 2 3 5 6 7 8 9 10 11 = dim. scale & dorian | 2 5 7 8 11 = 2: 0 3 5 6 9 = 5: 0 2 3 6 9 = 7: 0 1 4 7 10 = 8: 0 3 6 9 11 = 11: 0 3 6 8 9 0 2 4 5 6 7 8 9 10 11 = whole tone & ionian | 4 5 7 9 11 = 4: 0 1 3 5 7 = 5: 0 2 4 6 11 = 7: 0 2 4 9 10 = 9: 0 2 7 8 10 = 11: 0 5 6 8 10 0 3 4 5 6 7 8 9 10 11 | 3 4 5 8 9 = 3: 0 1 2 5 6 = 4: 0 1 4 5 11 = 5: 0 3 4 10 11 = 8: 0 1 7 8 9 = 9: 0 6 7 8 11 chromatic unidecachord = diamorphic with supplementary 2nd, 3rd, 4th, 6th (Scale Degrees: 12233445667) 0 1 2 3 4 5 6 7 8 9 10 = mixolocrian, 1st 11 chromatics | 0 1 2 3 5 6 7 9 = 0: 0 1 2 3 5 6 7 9 = 1: 0 1 2 4 5 6 8 11 = 2: 0 1 3 4 5 7 10 11 = 3: 0 2 3 4 6 9 10 11 = 5: 0 1 2 4 7 8 9 10 = 6: 0 1 3 6 7 8 9 11 = 7: 0 2 5 6 7 8 10 11 = 9: 0 3 4 5 6 8 9 10 0 1 2 3 4 5 6 7 8 9 11 | 0 1 2 4 5 6 8 11 = 0: 0 1 2 4 5 6 8 11 = 1: 0 1 3 4 5 7 10 11 = 2: 0 2 3 4 6 9 10 11 = 4: 0 1 2 4 7 8 9 10 = 5: 0 1 3 6 7 8 9 11 = 6: 0 2 5 6 7 8 10 11 = 8: 0 3 4 5 6 8 9 10 = 11: 0 1 2 3 5 6 7 9 0 1 2 3 4 5 6 7 8 10 11 | 0 1 3 4 5 7 10 11 = 0: 0 1 3 4 5 7 10 11 = 1: 0 2 3 4 6 9 10 11 = 3: 0 1 2 4 7 8 9 10 = 4: 0 1 3 6 7 8 9 11 = 5: 0 2 5 6 7 8 10 11 = 7: 0 3 4 5 6 8 9 10 = 10: 0 1 2 3 5 6 7 9 = 11: 0 1 2 4 5 6 8 11 0 1 2 3 4 5 6 7 9 10 11 = auxdim. scale & ionian | 0 2 3 4 6 9 10 11 = 0: 0 2 3 4 6 9 10 11 = 2: 0 1 2 4 7 8 9 10 = 3: 0 1 3 6 7 8 9 11 = 4: 0 2 5 6 7 8 10 11 = 6: 0 3 4 5 6 8 9 10 = 9: 0 1 2 3 5 6 7 9 = 10: 0 1 2 4 5 6 8 11 = 11: 0 1 3 4 5 7 10 11 diamorphic with supplementary 2nd, 3rd, 6th, 7th (Scale Degrees: 12233456677) 0 1 2 3 4 5 6 8 9 10 11 = 11 in 4ths | 1 2 3 5 8 9 10 11 = 1: 0 1 2 4 7 8 9 10 = 2: 0 1 3 6 7 8 9 11 = 3: 0 2 5 6 7 8 10 11 = 5: 0 3 4 5 6 8 9 10 = 8: 0 1 2 3 5 6 7 9 = 9: 0 1 2 4 5 6 8 11 = 10: 0 1 3 4 5 7 10 11 = 11: 0 2 3 4 6 9 10 11 0 1 2 3 4 5 7 8 9 10 11 = iophrygian, Spanish Gypsy & dorian, consonant-11 | 0 1 2 4 7 8 9 10 = 0: 0 1 2 4 7 8 9 10 = 1: 0 1 3 6 7 8 9 11 = 2: 0 2 5 6 7 8 10 11 = 4: 0 3 4 5 6 8 9 10 = 7: 0 1 2 3 5 6 7 9 = 8: 0 1 2 4 5 6 8 11 = 9: 0 1 3 4 5 7 10 11 = 10: 0 2 3 4 6 9 10 11 0 1 2 3 4 6 7 8 9 10 11 = 11 in 5ths, most stable 11 chord type | 0 1 3 6 7 8 9 11 = 0: 0 1 3 6 7 8 9 11 = 1: 0 2 5 6 7 8 10 11 = 3: 0 3 4 5 6 8 9 10 = 6: 0 1 2 3 5 6 7 9 = 7: 0 1 2 4 5 6 8 11 = 8: 0 1 3 4 5 7 10 11 = 9: 0 2 3 4 6 9 10 11 = 11: 0 1 2 4 7 8 9 10 diamorphic with supplementary 2nd, 4th, 6th, 7th (Scale Degrees: 12234456677) 0 1 2 3 5 6 7 8 9 10 11 = locrian & mel. min., dim. & phrygian | 0 2 5 6 7 8 10 11 = 0: 0 2 5 6 7 8 10 11 = 2: 0 3 4 5 6 8 9 10 = 5: 0 1 2 3 5 6 7 9 = 6: 0 1 2 4 5 6 8 11 = 7: 0 1 3 4 5 7 10 11 = 8: 0 2 3 4 6 9 10 11 = 10: 0 1 2 4 7 8 9 10 = 11: 0 1 3 6 7 8 9 11 0 1 2 4 5 6 7 8 9 10 11 = Northern lights chord | 1 4 5 6 7 9 10 11 = 1: 0 3 4 5 6 8 9 10 = 4: 0 1 2 3 5 6 7 9 = 5: 0 1 2 4 5 6 8 11 = 6: 0 1 3 4 5 7 10 11 = 7: 0 2 3 4 6 9 10 11 = 9: 0 1 2 4 7 8 9 10 = 10: 0 1 3 6 7 8 9 11 = 11: 0 2 5 6 7 8 10 11 0 1 3 4 5 6 7 8 9 10 11 | 0 3 4 5 6 8 9 10 = 0: 0 3 4 5 6 8 9 10 = 3: 0 1 2 3 5 6 7 9 = 4: 0 1 2 4 5 6 8 11 = 5: 0 1 3 4 5 7 10 11 = 6: 0 2 3 4 6 9 10 11 = 8: 0 1 2 4 7 8 9 10 = 9: 0 1 3 6 7 8 9 11 = 10: 0 2 5 6 7 8 10 11 0 2 3 4 5 6 7 8 9 10 11 = aeolydian, whole tone & dorian | 2 3 4 5 7 8 9 11 = 2: 0 1 2 3 5 6 7 9 = 3: 0 1 2 4 5 6 8 11 = 4: 0 1 3 4 5 7 10 11 = 5: 0 2 3 4 6 9 10 11 = 7: 0 1 2 4 7 8 9 10 = 8: 0 1 3 6 7 8 9 11 = 9: 0 2 5 6 7 8 10 11 = 11: 0 3 4 5 6 8 9 10 chromatic Scale = diamorphic with supplementary 2nd, 3rd, 4th, 6th, 7th (Scale Degrees: 122334456677) 0 1 2 3 4 5 6 7 8 9 10 11 = chromatic, dodecachord, 12 in 4ths, 12 in 5ths | 0 1 2 3 4 5 6 7 8 9 10 11 = 0: 0 1 2 3 4 5 6 7 8 9 10 11 = 1: 0 1 2 3 4 5 6 7 8 9 10 11 = 2: 0 1 2 3 4 5 6 7 8 9 10 11 = 3: 0 1 2 3 4 5 6 7 8 9 10 11 = 4: 0 1 2 3 4 5 6 7 8 9 10 11 = 5: 0 1 2 3 4 5 6 7 8 9 10 11 = 6: 0 1 2 3 4 5 6 7 8 9 10 11 = 7: 0 1 2 3 4 5 6 7 8 9 10 11 = 8: 0 1 2 3 4 5 6 7 8 9 10 11 = 9: 0 1 2 3 4 5 6 7 8 9 10 11 = 10: 0 1 2 3 4 5 6 7 8 9 10 11 = 11: 0 1 2 3 4 5 6 7 8 9 10 11

## Parallel Supersets

•  Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 3 6 7 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 '' 1 7 207 0 1 2 3 6 7 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 2 1 7 207 0 1 3 4 6 7 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 4 1 7 207 0 1 3 6 7 8 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 8 1 7 207 0 1 3 6 7 9 10 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 10 1 7 207 0 1 3 6 7 9 11 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 11 1 7 207 0 1 2 3 4 6 7 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 2 4 1 7 207 0 1 3 4 5 6 7 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 4 5 1 7 207 0 1 2 3 6 7 8 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 2 8 1 7 207 0 1 3 4 6 7 8 9 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 4 8 1 7 207 0 1 2 3 6 7 9 10 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 2 10 1 7 207 0 1 3 4 6 7 9 11 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 4 11 1 7 207 0 1 3 5 6 7 9 10 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 5 10 1 7 207 0 1 3 5 6 7 9 11 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 5 11 1 7 207 0 1 3 6 7 8 9 10 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 8 10 1 7 207 0 1 3 6 7 9 10 11 0 1 3 7 0 6 0:0 6 0 1 3 6 7 9 0:0 1 3 6 7 9 10 11 1 7 207 0 1 2 4 7 8 10 0 1 3 7 1 7 1:0 6 1 2 4 7 8 10 1:0 1 3 6 7 9 0 2 8 207 0 1 2 4 5 7 8 10 0 1 3 7 1 7 1:0 6 1 2 4 7 8 10 1:0 1 3 6 7 9 0 5 2 8 207 0 1 2 4 6 7 8 10 0 1 3 7 1 7 1:0 6 1 2 4 7 8 10 1:0 1 3 6 7 9 0 6 2 8 207 0 1 2 4 7 8 10 11 0 1 3 7 1 7 1:0 6 1 2 4 7 8 10 1:0 1 3 6 7 9 0 11 2 8 207 0 3 4 5 6 9 10 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 5 4 10 207 0 3 4 6 7 9 10 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 7 4 10 207 0 3 4 6 8 9 10 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 8 4 10 207 0 3 4 6 9 10 11 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 11 4 10 207 0 1 3 4 5 6 9 10 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 1 5 4 10 207 0 2 3 4 6 7 9 10 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 2 7 4 10 207 0 1 3 4 6 9 10 11 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 1 11 4 10 207 0 3 4 5 6 7 9 10 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 5 7 4 10 207 0 3 4 5 6 9 10 11 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 5 11 4 10 207 0 3 4 6 7 8 9 10 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 7 8 4 10 207 0 3 4 6 7 9 10 11 0 1 3 7 3 9 3:0 6 0 3 4 6 9 10 3:0 1 3 6 7 9 7 11 4 10 207 0 2 3 5 6 8 11 0 1 3 7 5 11 5:0 6 0 2 5 6 8 11 5:0 1 3 6 7 9 3 0 6 207 0 2 4 5 6 8 11 0 1 3 7 5 11 5:0 6 0 2 5 6 8 11 5:0 1 3 6 7 9 4 0 6 207 0 1 2 5 6 7 8 11 0 1 3 7 5 11 5:0 6 0 2 5 6 8 11 5:0 1 3 6 7 9 1 7 0 6 207 0 2 3 5 6 7 8 11 0 1 3 7 5 11 5:0 6 0 2 5 6 8 11 5:0 1 3 6 7 9 3 7 0 6 207 0 2 3 5 8 9 11 0 1 3 7 2 8 2:0 6 2 3 5 8 9 11 2:0 1 3 6 7 9 0 3 9 207 0 2 3 5 7 8 9 11 0 1 3 7 2 8 2:0 6 2 3 5 8 9 11 2:0 1 3 6 7 9 0 7 3 9 207 0 2 3 5 8 9 10 11 0 1 3 7 2 8 2:0 6 2 3 5 8 9 11 2:0 1 3 6 7 9 0 10 3 9 207 0 1 4 5 7 10 11 0 1 3 7 4 10 4:0 6 1 4 5 7 10 11 4:0 1 3 6 7 9 0 5 11 207 0 1 2 4 5 7 10 11 0 1 3 7 4 10 4:0 6 1 4 5 7 10 11 4:0 1 3 6 7 9 0 2 5 11 207 0 1 4 5 6 7 10 11 0 1 3 7 4 10 4:0 6 1 4 5 7 10 11 4:0 1 3 6 7 9 0 6 5 11 207 0 1 4 5 7 8 10 11 0 1 3 7 4 10 4:0 6 1 4 5 7 10 11 4:0 1 3 6 7 9 0 8 5 11 207 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 7 8 0 1 3 7 0 1 1:0 11 0 1 2 3 4 7 8 0:0 1 2 3 4 7 8 '' 1 225 0 1 2 3 4 5 7 8 0 1 3 7 0 1 1:0 11 0 1 2 3 4 7 8 0:0 1 2 3 4 7 8 5 1 225 0 1 2 3 4 6 7 8 0 1 3 7 0 1 1:0 11 0 1 2 3 4 7 8 0:0 1 2 3 4 7 8 6 1 225 0 1 2 3 4 7 8 9 0 1 3 7 0 1 1:0 11 0 1 2 3 4 7 8 0:0 1 2 3 4 7 8 9 1 225 0 1 2 3 4 7 8 11 0 1 3 7 0 1 1:0 11 0 1 2 3 4 7 8 0:0 1 2 3 4 7 8 11 1 225 0 1 2 5 6 7 8 9 0 1 3 7 5 6 6:0 11 0 1 5 6 7 8 9 5:0 1 2 3 4 7 8 2 6 225 0 1 4 5 6 7 8 9 0 1 3 7 5 6 6:0 11 0 1 5 6 7 8 9 5:0 1 2 3 4 7 8 4 6 225 0 1 2 6 7 8 9 10 0 1 3 7 6 7 7:0 11 1 2 6 7 8 9 10 6:0 1 2 3 4 7 8 0 7 225 0 1 2 3 6 7 11 0 1 3 7 0 11 0:0 11 0 1 2 3 6 7 11 11:0 1 2 3 4 7 8 '' 0 225 0 1 2 3 4 6 7 11 0 1 3 7 0 11 0:0 11 0 1 2 3 6 7 11 11:0 1 2 3 4 7 8 4 0 225 0 1 2 3 5 6 7 11 0 1 3 7 0 11 0:0 11 0 1 2 3 6 7 11 11:0 1 2 3 4 7 8 5 0 225 0 1 2 3 6 7 8 11 0 1 3 7 0 11 0:0 11 0 1 2 3 6 7 11 11:0 1 2 3 4 7 8 8 0 225 0 1 2 3 6 7 10 11 0 1 3 7 0 11 0:0 11 0 1 2 3 6 7 11 11:0 1 2 3 4 7 8 10 0 225 0 4 5 6 7 8 11 0 1 3 7 4 5 5:0 11 0 4 5 6 7 8 11 4:0 1 2 3 4 7 8 '' 5 225 0 1 4 5 6 7 8 11 0 1 3 7 4 5 5:0 11 0 4 5 6 7 8 11 4:0 1 2 3 4 7 8 1 5 225 0 3 4 5 6 7 8 11 0 1 3 7 4 5 5:0 11 0 4 5 6 7 8 11 4:0 1 2 3 4 7 8 3 5 225 0 4 5 6 7 8 10 11 0 1 3 7 4 5 5:0 11 0 4 5 6 7 8 11 4:0 1 2 3 4 7 8 10 5 225 0 1 2 5 6 7 10 11 0 1 3 7 10 11 11:0 11 0 1 2 5 6 10 11 10:0 1 2 3 4 7 8 7 11 225 0 3 4 5 6 7 10 11 0 1 3 7 3 4 4:0 11 3 4 5 6 7 10 11 3:0 1 2 3 4 7 8 0 4 225 0 1 3 4 5 9 10 11 0 1 3 7 9 10 10:0 11 0 1 4 5 9 10 11 9:0 1 2 3 4 7 8 3 10 225 0 3 4 8 9 10 11 0 1 3 7 8 9 9:0 11 0 3 4 8 9 10 11 8:0 1 2 3 4 7 8 '' 9 225 0 1 3 4 8 9 10 11 0 1 3 7 8 9 9:0 11 0 3 4 8 9 10 11 8:0 1 2 3 4 7 8 1 9 225 0 2 3 4 8 9 10 11 0 1 3 7 8 9 9:0 11 0 3 4 8 9 10 11 8:0 1 2 3 4 7 8 2 9 225 0 3 4 7 8 9 10 11 0 1 3 7 8 9 9:0 11 0 3 4 8 9 10 11 8:0 1 2 3 4 7 8 7 9 225 0 2 3 7 8 9 10 11 0 1 3 7 7 8 8:0 11 2 3 7 8 9 10 11 7:0 1 2 3 4 7 8 0 8 225 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 5 7 9 0 1 3 7 0 2 2:0 10 0 1 2 3 5 7 9 5:0 2 4 7 8 9 10 '' 3 236 0 1 2 3 4 5 7 9 0 1 3 7 0 2 2:0 10 0 1 2 3 5 7 9 5:0 2 4 7 8 9 10 4 3 236 0 1 2 3 5 7 8 9 0 1 3 7 0 2 2:0 10 0 1 2 3 5 7 9 5:0 2 4 7 8 9 10 8 3 236 0 1 2 3 5 7 9 10 0 1 3 7 0 2 2:0 10 0 1 2 3 5 7 9 5:0 2 4 7 8 9 10 10 3 236 0 1 2 3 5 7 9 11 0 1 3 7 0 2 2:0 10 0 1 2 3 5 7 9 5:0 2 4 7 8 9 10 11 3 236 0 1 2 3 4 6 8 10 0 1 3 7 1 3 3:0 10 1 2 3 4 6 8 10 6:0 2 4 7 8 9 10 0 4 236 0 3 4 5 6 8 10 0 1 3 7 3 5 5:0 10 0 3 4 5 6 8 10 8:0 2 4 7 8 9 10 '' 6 236 0 3 4 5 6 7 8 10 0 1 3 7 3 5 5:0 10 0 3 4 5 6 8 10 8:0 2 4 7 8 9 10 7 6 236 0 1 2 5 6 7 8 10 0 1 3 7 5 7 7:0 10 0 2 5 6 7 8 10 10:0 2 4 7 8 9 10 1 8 236 0 2 3 5 6 7 8 10 0 1 3 7 5 7 7:0 10 0 2 5 6 7 8 10 10:0 2 4 7 8 9 10 3 8 236 0 2 4 5 6 7 8 10 0 1 3 7 5 7 7:0 10 0 2 5 6 7 8 10 10:0 2 4 7 8 9 10 4 8 236 0 2 5 6 7 8 9 10 0 1 3 7 5 7 7:0 10 0 2 5 6 7 8 10 10:0 2 4 7 8 9 10 9 8 236 0 2 4 7 8 9 10 0 1 3 7 7 9 9:0 10 0 2 4 7 8 9 10 0:0 2 4 7 8 9 10 '' 10 236 0 2 3 4 7 8 9 10 0 1 3 7 7 9 9:0 10 0 2 4 7 8 9 10 0:0 2 4 7 8 9 10 3 10 236 0 2 4 5 7 8 9 10 0 1 3 7 7 9 9:0 10 0 2 4 7 8 9 10 0:0 2 4 7 8 9 10 5 10 236 0 2 4 6 7 8 9 10 0 1 3 7 7 9 9:0 10 0 2 4 7 8 9 10 0:0 2 4 7 8 9 10 6 10 236 0 2 4 7 8 9 10 11 0 1 3 7 7 9 9:0 10 0 2 4 7 8 9 10 0:0 2 4 7 8 9 10 11 10 236 0 1 2 4 6 7 8 11 0 1 3 7 1 11 1:0 10 0 1 2 4 6 8 11 4:0 2 4 7 8 9 10 7 2 236 0 1 2 4 6 8 10 11 0 1 3 7 1 11 1:0 10 0 1 2 4 6 8 11 4:0 2 4 7 8 9 10 10 2 236 0 2 3 4 5 7 9 11 0 1 3 7 2 4 4:0 10 2 3 4 5 7 9 11 7:0 2 4 7 8 9 10 0 5 236 0 1 4 5 6 7 9 11 0 1 3 7 4 6 6:0 10 1 4 5 6 7 9 11 9:0 2 4 7 8 9 10 0 7 236 0 1 3 5 7 10 11 0 1 3 7 0 10 0:0 10 0 1 3 5 7 10 11 3:0 2 4 7 8 9 10 '' 1 236 0 1 2 3 5 7 10 11 0 1 3 7 0 10 0:0 10 0 1 3 5 7 10 11 3:0 2 4 7 8 9 10 2 1 236 0 1 3 5 6 7 10 11 0 1 3 7 0 10 0:0 10 0 1 3 5 7 10 11 3:0 2 4 7 8 9 10 6 1 236 0 1 3 5 7 8 10 11 0 1 3 7 0 10 0:0 10 0 1 3 5 7 10 11 3:0 2 4 7 8 9 10 8 1 236 0 1 3 5 7 9 10 11 0 1 3 7 0 10 0:0 10 0 1 3 5 7 10 11 3:0 2 4 7 8 9 10 9 1 236 0 2 4 5 6 9 10 11 0 1 3 7 9 11 11:0 10 0 2 4 6 9 10 11 2:0 2 4 7 8 9 10 5 0 236 0 2 4 6 7 9 10 11 0 1 3 7 9 11 11:0 10 0 2 4 6 9 10 11 2:0 2 4 7 8 9 10 7 0 236 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 3 5 6 7 8 0 1 3 7 0 5 5:0 7 0 1 3 5 6 7 8 8:0 4 5 7 9 10 11 '' 0 248 0 1 3 4 5 6 7 8 0 1 3 7 0 5 5:0 7 0 1 3 5 6 7 8 8:0 4 5 7 9 10 11 4 0 248 0 1 3 5 6 7 8 11 0 1 3 7 0 5 5:0 7 0 1 3 5 6 7 8 8:0 4 5 7 9 10 11 11 0 248 0 1 2 4 6 7 8 9 0 1 3 7 1 6 6:0 7 1 2 4 6 7 8 9 9:0 4 5 7 9 10 11 0 1 248 0 1 2 3 7 8 10 0 1 3 7 0 7 0:0 7 0 1 2 3 7 8 10 3:0 4 5 7 9 10 11 '' 7 248 0 1 2 3 5 7 8 10 0 1 3 7 0 7 0:0 7 0 1 2 3 7 8 10 3:0 4 5 7 9 10 11 5 7 248 0 1 2 3 6 7 8 10 0 1 3 7 0 7 0:0 7 0 1 2 3 7 8 10 3:0 4 5 7 9 10 11 6 7 248 0 1 2 3 7 8 9 10 0 1 3 7 0 7 0:0 7 0 1 2 3 7 8 10 3:0 4 5 7 9 10 11 9 7 248 0 1 2 3 7 8 10 11 0 1 3 7 0 7 0:0 7 0 1 2 3 7 8 10 3:0 4 5 7 9 10 11 11 7 248 0 2 3 4 5 9 10 0 1 3 7 2 9 2:0 7 0 2 3 4 5 9 10 5:0 4 5 7 9 10 11 '' 9 248 0 2 3 4 5 7 9 10 0 1 3 7 2 9 2:0 7 0 2 3 4 5 9 10 5:0 4 5 7 9 10 11 7 9 248 0 2 3 5 7 8 9 10 0 1 3 7 2 7 7:0 7 2 3 5 7 8 9 10 10:0 4 5 7 9 10 11 0 2 248 0 2 4 5 6 7 11 0 1 3 7 4 11 4:0 7 0 2 4 5 6 7 11 7:0 4 5 7 9 10 11 '' 11 248 0 1 2 4 5 6 7 11 0 1 3 7 4 11 4:0 7 0 2 4 5 6 7 11 7:0 4 5 7 9 10 11 1 11 248 0 2 3 4 5 6 7 11 0 1 3 7 4 11 4:0 7 0 2 4 5 6 7 11 7:0 4 5 7 9 10 11 3 11 248 0 2 4 5 6 7 9 11 0 1 3 7 4 11 4:0 7 0 2 4 5 6 7 11 7:0 4 5 7 9 10 11 9 11 248 0 2 4 5 6 7 10 11 0 1 3 7 4 11 4:0 7 0 2 4 5 6 7 11 7:0 4 5 7 9 10 11 10 11 248 0 1 2 6 7 9 11 0 1 3 7 6 11 11:0 7 0 1 2 6 7 9 11 2:0 4 5 7 9 10 11 '' 6 248 0 1 2 4 6 7 9 11 0 1 3 7 6 11 11:0 7 0 1 2 6 7 9 11 2:0 4 5 7 9 10 11 4 6 248 0 1 2 5 6 7 9 11 0 1 3 7 6 11 11:0 7 0 1 2 6 7 9 11 2:0 4 5 7 9 10 11 5 6 248 0 1 2 6 7 9 10 11 0 1 3 7 6 11 11:0 7 0 1 2 6 7 9 11 2:0 4 5 7 9 10 11 10 6 248 0 1 4 5 6 8 10 11 0 1 3 7 5 10 10:0 7 0 1 5 6 8 10 11 1:0 4 5 7 9 10 11 4 5 248 0 4 5 7 9 10 11 0 1 3 7 4 9 9:0 7 0 4 5 7 9 10 11 0:0 4 5 7 9 10 11 '' 4 248 0 2 4 5 7 9 10 11 0 1 3 7 4 9 9:0 7 0 4 5 7 9 10 11 0:0 4 5 7 9 10 11 2 4 248 0 3 4 5 7 9 10 11 0 1 3 7 4 9 9:0 7 0 4 5 7 9 10 11 0:0 4 5 7 9 10 11 3 4 248 0 4 5 6 7 9 10 11 0 1 3 7 4 9 9:0 7 0 4 5 7 9 10 11 0:0 4 5 7 9 10 11 6 4 248 0 4 5 7 8 9 10 11 0 1 3 7 4 9 9:0 7 0 4 5 7 9 10 11 0:0 4 5 7 9 10 11 8 4 248 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 4 5 6 7 8 0 1 3 7 1 5 1:0 4 0 1 2 4 5 6 8 1:0 1 3 4 5 7 11 7 8 251 0 2 3 4 6 7 8 10 0 1 3 7 3 7 3:0 4 2 3 4 6 7 8 10 3:0 1 3 4 5 7 11 0 10 251 0 4 5 6 7 8 9 10 0 1 3 7 5 9 5:0 4 0 4 5 6 8 9 10 5:0 1 3 4 5 7 11 7 0 251 0 1 3 4 5 7 11 0 1 3 7 0 4 0:0 4 0 1 3 4 5 7 11 0:0 1 3 4 5 7 11 '' 7 251 0 1 2 3 4 5 7 11 0 1 3 7 0 4 0:0 4 0 1 3 4 5 7 11 0:0 1 3 4 5 7 11 2 7 251 0 1 3 4 5 6 7 11 0 1 3 7 0 4 0:0 4 0 1 3 4 5 7 11 0:0 1 3 4 5 7 11 6 7 251 0 1 3 4 5 7 8 11 0 1 3 7 0 4 0:0 4 0 1 3 4 5 7 11 0:0 1 3 4 5 7 11 8 7 251 0 1 3 4 5 7 9 11 0 1 3 7 0 4 0:0 4 0 1 3 4 5 7 11 0:0 1 3 4 5 7 11 9 7 251 0 1 3 7 8 9 11 0 1 3 7 0 8 8:0 4 0 1 3 7 8 9 11 8:0 1 3 4 5 7 11 '' 3 251 0 1 2 3 7 8 9 11 0 1 3 7 0 8 8:0 4 0 1 3 7 8 9 11 8:0 1 3 4 5 7 11 2 3 251 0 1 3 4 7 8 9 11 0 1 3 7 0 8 8:0 4 0 1 3 7 8 9 11 8:0 1 3 4 5 7 11 4 3 251 0 1 3 5 7 8 9 11 0 1 3 7 0 8 8:0 4 0 1 3 7 8 9 11 8:0 1 3 4 5 7 11 5 3 251 0 1 3 7 8 9 10 11 0 1 3 7 0 8 8:0 4 0 1 3 7 8 9 11 8:0 1 3 4 5 7 11 10 3 251 0 3 4 5 7 8 9 11 0 1 3 7 4 8 4:0 4 3 4 5 7 8 9 11 4:0 1 3 4 5 7 11 0 11 251 0 2 3 4 6 10 11 0 1 3 7 3 11 11:0 4 0 2 3 4 6 10 11 11:0 1 3 4 5 7 11 '' 6 251 0 2 3 4 5 6 10 11 0 1 3 7 3 11 11:0 4 0 2 3 4 6 10 11 11:0 1 3 4 5 7 11 5 6 251 0 2 3 4 6 7 10 11 0 1 3 7 3 11 11:0 4 0 2 3 4 6 10 11 11:0 1 3 4 5 7 11 7 6 251 0 2 6 7 8 10 11 0 1 3 7 7 11 7:0 4 0 2 6 7 8 10 11 7:0 1 3 4 5 7 11 '' 2 251 0 1 2 6 7 8 10 11 0 1 3 7 7 11 7:0 4 0 2 6 7 8 10 11 7:0 1 3 4 5 7 11 1 2 251 0 2 3 6 7 8 10 11 0 1 3 7 7 11 7:0 4 0 2 6 7 8 10 11 7:0 1 3 4 5 7 11 3 2 251 0 2 4 6 7 8 10 11 0 1 3 7 7 11 7:0 4 0 2 6 7 8 10 11 7:0 1 3 4 5 7 11 4 2 251 0 2 6 7 8 9 10 11 0 1 3 7 7 11 7:0 4 0 2 6 7 8 10 11 7:0 1 3 4 5 7 11 9 2 251 0 1 5 6 7 9 10 11 0 1 3 7 6 10 6:0 4 1 5 6 7 9 10 11 6:0 1 3 4 5 7 11 0 1 251 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 2 3 5 6 7 8 9 0 1 3 7 2 5 2:0 3 0 2 3 5 6 8 9 5:0 1 3 4 7 9 10 7 5 277 0 2 3 4 5 6 7 8 9 0 1 3 7 2 5 2:0 3 0 2 3 5 6 8 9 5:0 1 3 4 7 9 10 4 7 5 277 0 1 3 4 6 7 10 0 1 3 7 0 3 0:0 3 0 1 3 4 6 7 10 3:0 1 3 4 7 9 10 '' 3 277 0 1 2 3 4 6 7 10 0 1 3 7 0 3 0:0 3 0 1 3 4 6 7 10 3:0 1 3 4 7 9 10 2 3 277 0 1 3 4 5 6 7 10 0 1 3 7 0 3 0:0 3 0 1 3 4 6 7 10 3:0 1 3 4 7 9 10 5 3 277 0 1 3 4 6 7 8 10 0 1 3 7 0 3 0:0 3 0 1 3 4 6 7 10 3:0 1 3 4 7 9 10 8 3 277 0 1 3 4 6 7 10 11 0 1 3 7 0 3 0:0 3 0 1 3 4 6 7 10 3:0 1 3 4 7 9 10 11 3 277 0 1 2 3 4 5 6 7 10 0 1 3 7 0 3 0:0 3 0 1 3 4 6 7 10 3:0 1 3 4 7 9 10 2 5 3 277 0 1 3 4 6 7 8 10 11 0 1 3 7 0 3 0:0 3 0 1 3 4 6 7 10 3:0 1 3 4 7 9 10 8 11 3 277 0 1 3 4 7 9 10 0 1 3 7 0 9 9:0 3 0 1 3 4 7 9 10 0:0 1 3 4 7 9 10 '' 0 277 0 1 2 3 4 7 9 10 0 1 3 7 0 9 9:0 3 0 1 3 4 7 9 10 0:0 1 3 4 7 9 10 2 0 277 0 1 3 4 5 7 9 10 0 1 3 7 0 9 9:0 3 0 1 3 4 7 9 10 0:0 1 3 4 7 9 10 5 0 277 0 1 3 4 7 8 9 10 0 1 3 7 0 9 9:0 3 0 1 3 4 7 9 10 0:0 1 3 4 7 9 10 8 0 277 0 1 3 4 7 9 10 11 0 1 3 7 0 9 9:0 3 0 1 3 4 7 9 10 0:0 1 3 4 7 9 10 11 0 277 0 1 2 3 4 7 9 10 11 0 1 3 7 0 9 9:0 3 0 1 3 4 7 9 10 0:0 1 3 4 7 9 10 2 11 0 277 0 1 3 4 5 7 8 9 10 0 1 3 7 0 9 9:0 3 0 1 3 4 7 9 10 0:0 1 3 4 7 9 10 5 8 0 277 0 1 4 6 7 9 10 0 1 3 7 6 9 6:0 3 0 1 4 6 7 9 10 9:0 1 3 4 7 9 10 '' 9 277 0 1 2 4 6 7 9 10 0 1 3 7 6 9 6:0 3 0 1 4 6 7 9 10 9:0 1 3 4 7 9 10 2 9 277 0 1 4 5 6 7 9 10 0 1 3 7 6 9 6:0 3 0 1 4 6 7 9 10 9:0 1 3 4 7 9 10 5 9 277 0 1 4 6 7 8 9 10 0 1 3 7 6 9 6:0 3 0 1 4 6 7 9 10 9:0 1 3 4 7 9 10 8 9 277 0 1 4 6 7 9 10 11 0 1 3 7 6 9 6:0 3 0 1 4 6 7 9 10 9:0 1 3 4 7 9 10 11 9 277 0 1 2 4 5 6 7 9 10 0 1 3 7 6 9 6:0 3 0 1 4 6 7 9 10 9:0 1 3 4 7 9 10 2 5 9 277 0 1 4 6 7 8 9 10 11 0 1 3 7 6 9 6:0 3 0 1 4 6 7 9 10 9:0 1 3 4 7 9 10 8 11 9 277 0 1 2 4 5 7 8 11 0 1 3 7 1 4 1:0 3 1 2 4 5 7 8 11 4:0 1 3 4 7 9 10 0 4 277 0 1 2 4 5 7 8 9 11 0 1 3 7 1 4 1:0 3 1 2 4 5 7 8 11 4:0 1 3 4 7 9 10 0 9 4 277 0 2 3 5 6 9 11 0 1 3 7 2 11 11:0 3 0 2 3 5 6 9 11 2:0 1 3 4 7 9 10 '' 2 277 0 2 3 5 6 7 9 11 0 1 3 7 2 11 11:0 3 0 2 3 5 6 9 11 2:0 1 3 4 7 9 10 7 2 277 0 2 3 5 6 7 9 10 11 0 1 3 7 2 11 11:0 3 0 2 3 5 6 9 11 2:0 1 3 4 7 9 10 7 10 2 277 0 2 3 6 8 9 11 0 1 3 7 8 11 8:0 3 0 2 3 6 8 9 11 11:0 1 3 4 7 9 10 '' 11 277 0 2 3 6 7 8 9 11 0 1 3 7 8 11 8:0 3 0 2 3 6 8 9 11 11:0 1 3 4 7 9 10 7 11 277 0 2 3 4 6 7 8 9 11 0 1 3 7 8 11 8:0 3 0 2 3 6 8 9 11 11:0 1 3 4 7 9 10 4 7 11 277 0 3 5 6 7 8 9 11 0 1 3 7 5 8 5:0 3 0 3 5 6 8 9 11 8:0 1 3 4 7 9 10 7 8 277 0 3 5 6 7 8 9 10 11 0 1 3 7 5 8 5:0 3 0 3 5 6 8 9 11 8:0 1 3 4 7 9 10 7 10 8 277 0 1 2 5 7 8 10 11 0 1 3 7 7 10 7:0 3 1 2 5 7 8 10 11 10:0 1 3 4 7 9 10 0 10 277 0 1 2 5 7 8 9 10 11 0 1 3 7 7 10 7:0 3 1 2 5 7 8 10 11 10:0 1 3 4 7 9 10 0 9 10 277 0 2 4 5 7 8 10 11 0 1 3 7 4 7 4:0 3 2 4 5 7 8 10 11 7:0 1 3 4 7 9 10 0 7 277 0 2 3 4 5 7 8 10 11 0 1 3 7 4 7 4:0 3 2 4 5 7 8 10 11 7:0 1 3 4 7 9 10 0 3 7 277 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 3 5 6 7 8 9 0 1 3 7 0 5 6 5:0 1 7 0 1 3 5 6 7 8 9 8:0 1 4 5 7 9 10 11 '' 0 1 6 7 299 0 1 3 5 6 7 8 9 10 0 1 3 7 0 5 6 5:0 1 7 0 1 3 5 6 7 8 9 8:0 1 4 5 7 9 10 11 10 0 1 6 7 299 0 1 2 3 4 7 8 10 0 1 3 7 0 1 7 0:0 1 7 0 1 2 3 4 7 8 10 3:0 1 4 5 7 9 10 11 '' 1 2 7 8 299 0 1 2 3 4 5 7 8 10 0 1 3 7 0 1 7 0:0 1 7 0 1 2 3 4 7 8 10 3:0 1 4 5 7 9 10 11 5 1 2 7 8 299 0 1 2 3 4 7 8 10 11 0 1 3 7 0 1 7 0:0 1 7 0 1 2 3 4 7 8 10 3:0 1 4 5 7 9 10 11 11 1 2 7 8 299 0 2 3 4 5 6 9 10 0 1 3 7 2 3 9 2:0 1 7 0 2 3 4 5 6 9 10 5:0 1 4 5 7 9 10 11 '' 3 4 9 10 299 0 1 2 3 4 5 6 9 10 0 1 3 7 2 3 9 2:0 1 7 0 2 3 4 5 6 9 10 5:0 1 4 5 7 9 10 11 1 3 4 9 10 299 0 2 3 4 5 6 7 9 10 0 1 3 7 2 3 9 2:0 1 7 0 2 3 4 5 6 9 10 5:0 1 4 5 7 9 10 11 7 3 4 9 10 299 0 2 4 5 6 7 8 11 0 1 3 7 4 5 11 4:0 1 7 0 2 4 5 6 7 8 11 7:0 1 4 5 7 9 10 11 '' 0 5 6 11 299 0 2 3 4 5 6 7 8 11 0 1 3 7 4 5 11 4:0 1 7 0 2 4 5 6 7 8 11 7:0 1 4 5 7 9 10 11 3 0 5 6 11 299 0 2 4 5 6 7 8 9 11 0 1 3 7 4 5 11 4:0 1 7 0 2 4 5 6 7 8 11 7:0 1 4 5 7 9 10 11 9 0 5 6 11 299 0 1 2 3 6 7 9 11 0 1 3 7 0 6 11 11:0 1 7 0 1 2 3 6 7 9 11 2:0 1 4 5 7 9 10 11 '' 0 1 6 7 299 0 1 2 3 4 6 7 9 11 0 1 3 7 0 6 11 11:0 1 7 0 1 2 3 6 7 9 11 2:0 1 4 5 7 9 10 11 4 0 1 6 7 299 0 1 2 3 6 7 9 10 11 0 1 3 7 0 6 11 11:0 1 7 0 1 2 3 6 7 9 11 2:0 1 4 5 7 9 10 11 10 0 1 6 7 299 0 1 4 5 7 9 10 11 0 1 3 7 4 9 10 9:0 1 7 0 1 4 5 7 9 10 11 0:0 1 4 5 7 9 10 11 '' 4 5 10 11 299 0 1 2 4 5 7 9 10 11 0 1 3 7 4 9 10 9:0 1 7 0 1 4 5 7 9 10 11 0:0 1 4 5 7 9 10 11 2 4 5 10 11 299 0 1 4 5 7 8 9 10 11 0 1 3 7 4 9 10 9:0 1 7 0 1 4 5 7 9 10 11 0:0 1 4 5 7 9 10 11 8 4 5 10 11 299 0 3 4 6 7 8 9 10 11 0 1 3 7 3 8 9 8:0 1 7 0 3 4 6 8 9 10 11 11:0 1 4 5 7 9 10 11 7 3 4 9 10 299 0 2 3 5 7 8 9 10 11 0 1 3 7 2 7 8 7:0 1 7 2 3 5 7 8 9 10 11 10:0 1 4 5 7 9 10 11 0 2 3 8 9 299 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 5 6 7 9 0 1 3 7 0 2 6 2:0 4 10 0 1 2 3 5 6 7 9 2:0 1 3 4 5 7 10 11 '' 1 3 7 9 303 0 1 2 3 4 5 6 7 9 0 1 3 7 0 2 6 2:0 4 10 0 1 2 3 5 6 7 9 2:0 1 3 4 5 7 10 11 4 1 3 7 9 303 0 1 2 3 5 6 7 9 10 0 1 3 7 0 2 6 2:0 4 10 0 1 2 3 5 6 7 9 2:0 1 3 4 5 7 10 11 10 1 3 7 9 303 0 3 4 5 6 7 8 9 10 0 1 3 7 3 5 9 5:0 4 10 0 3 4 5 6 8 9 10 5:0 1 3 4 5 7 10 11 7 0 4 6 10 303 0 1 2 4 7 8 9 10 0 1 3 7 1 7 9 9:0 4 10 0 1 2 4 7 8 9 10 9:0 1 3 4 5 7 10 11 '' 2 4 8 10 303 0 1 2 4 5 7 8 9 10 0 1 3 7 1 7 9 9:0 4 10 0 1 2 4 7 8 9 10 9:0 1 3 4 5 7 10 11 5 2 4 8 10 303 0 1 2 4 7 8 9 10 11 0 1 3 7 1 7 9 9:0 4 10 0 1 2 4 7 8 9 10 9:0 1 3 4 5 7 10 11 11 2 4 8 10 303 0 2 3 4 5 7 8 9 11 0 1 3 7 2 4 8 4:0 4 10 2 3 4 5 7 8 9 11 4:0 1 3 4 5 7 10 11 0 3 5 9 11 303 0 1 3 6 7 8 9 11 0 1 3 7 0 6 8 8:0 4 10 0 1 3 6 7 8 9 11 8:0 1 3 4 5 7 10 11 '' 1 3 7 9 303 0 1 3 4 6 7 8 9 11 0 1 3 7 0 6 8 8:0 4 10 0 1 3 6 7 8 9 11 8:0 1 3 4 5 7 10 11 4 1 3 7 9 303 0 1 3 6 7 8 9 10 11 0 1 3 7 0 6 8 8:0 4 10 0 1 3 6 7 8 9 11 8:0 1 3 4 5 7 10 11 10 1 3 7 9 303 0 1 3 4 5 7 10 11 0 1 3 7 0 4 10 0:0 4 10 0 1 3 4 5 7 10 11 0:0 1 3 4 5 7 10 11 '' 1 5 7 11 303 0 1 2 3 4 5 7 10 11 0 1 3 7 0 4 10 0:0 4 10 0 1 3 4 5 7 10 11 0:0 1 3 4 5 7 10 11 2 1 5 7 11 303 0 1 3 4 5 7 8 10 11 0 1 3 7 0 4 10 0:0 4 10 0 1 3 4 5 7 10 11 0:0 1 3 4 5 7 10 11 8 1 5 7 11 303 0 2 5 6 7 8 10 11 0 1 3 7 5 7 11 7:0 4 10 0 2 5 6 7 8 10 11 7:0 1 3 4 5 7 10 11 '' 0 2 6 8 303 0 2 3 5 6 7 8 10 11 0 1 3 7 5 7 11 7:0 4 10 0 2 5 6 7 8 10 11 7:0 1 3 4 5 7 10 11 3 0 2 6 8 303 0 2 3 4 6 9 10 11 0 1 3 7 3 9 11 11:0 4 10 0 2 3 4 6 9 10 11 11:0 1 3 4 5 7 10 11 '' 0 4 6 10 303 0 2 3 4 6 7 9 10 11 0 1 3 7 3 9 11 11:0 4 10 0 2 3 4 6 9 10 11 11:0 1 3 4 5 7 10 11 7 0 4 6 10 303 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 3 4 6 7 9 10 0 1 3 7 0 3 6 9 0:0 3 6 9 0 1 3 4 6 7 9 10 0:0 1 3 4 6 7 9 10 '' 0 1 3 4 6 7 9 10 324 0 1 2 3 4 6 7 9 10 0 1 3 7 0 3 6 9 0:0 3 6 9 0 1 3 4 6 7 9 10 0:0 1 3 4 6 7 9 10 2 0 1 3 4 6 7 9 10 324 0 1 3 4 5 6 7 9 10 0 1 3 7 0 3 6 9 0:0 3 6 9 0 1 3 4 6 7 9 10 0:0 1 3 4 6 7 9 10 5 0 1 3 4 6 7 9 10 324 0 1 3 4 6 7 8 9 10 0 1 3 7 0 3 6 9 0:0 3 6 9 0 1 3 4 6 7 9 10 0:0 1 3 4 6 7 9 10 8 0 1 3 4 6 7 9 10 324 0 1 3 4 6 7 9 10 11 0 1 3 7 0 3 6 9 0:0 3 6 9 0 1 3 4 6 7 9 10 0:0 1 3 4 6 7 9 10 11 0 1 3 4 6 7 9 10 324 0 2 3 5 6 8 9 11 0 1 3 7 2 5 8 11 2:0 3 6 9 0 2 3 5 6 8 9 11 2:0 1 3 4 6 7 9 10 '' 0 2 3 5 6 8 9 11 324 0 1 2 3 5 6 8 9 11 0 1 3 7 2 5 8 11 2:0 3 6 9 0 2 3 5 6 8 9 11 2:0 1 3 4 6 7 9 10 1 0 2 3 5 6 8 9 11 324 0 2 3 5 6 7 8 9 11 0 1 3 7 2 5 8 11 2:0 3 6 9 0 2 3 5 6 8 9 11 2:0 1 3 4 6 7 9 10 7 0 2 3 5 6 8 9 11 324 0 2 3 5 6 8 9 10 11 0 1 3 7 2 5 8 11 2:0 3 6 9 0 2 3 5 6 8 9 11 2:0 1 3 4 6 7 9 10 10 0 2 3 5 6 8 9 11 324 0 1 2 4 5 7 8 10 11 0 1 3 7 1 4 7 10 1:0 3 6 9 1 2 4 5 7 8 10 11 1:0 1 3 4 6 7 9 10 0 1 2 4 5 7 8 10 11 324 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 6 7 8 0 1 3 7 0 1 5 1:0 4 11 0 1 2 3 4 5 6 7 8 1:0 1 2 3 4 5 6 7 11 '' 0 1 8 325 0 1 2 3 4 5 6 7 11 0 1 3 7 0 4 11 0:0 4 11 0 1 2 3 4 5 6 7 11 0:0 1 2 3 4 5 6 7 11 '' 0 7 11 325 0 1 2 3 7 8 9 10 11 0 1 3 7 0 7 8 8:0 4 11 0 1 2 3 7 8 9 10 11 8:0 1 2 3 4 5 6 7 11 '' 3 7 8 325 0 1 2 6 7 8 9 10 11 0 1 3 7 6 7 11 7:0 4 11 0 1 2 6 7 8 9 10 11 7:0 1 2 3 4 5 6 7 11 '' 2 6 7 325 0 4 5 6 7 8 9 10 11 0 1 3 7 4 5 9 5:0 4 11 0 4 5 6 7 8 9 10 11 5:0 1 2 3 4 5 6 7 11 '' 0 4 5 325 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 4 5 6 7 8 9 10 0 1 3 7 5 6 9 5:0 1 4 0 1 4 5 6 7 8 9 10 6:0 1 2 3 4 6 7 10 11 '' 0 6 9 328 0 1 2 3 4 5 7 8 11 0 1 3 7 0 1 4 0:0 1 4 0 1 2 3 4 5 7 8 11 1:0 1 2 3 4 6 7 10 11 '' 1 4 7 328 0 3 4 5 6 7 8 9 11 0 1 3 7 4 5 8 4:0 1 4 0 3 4 5 6 7 8 9 11 5:0 1 2 3 4 6 7 10 11 '' 5 8 11 328 0 1 2 3 4 6 7 10 11 0 1 3 7 0 3 11 11:0 1 4 0 1 2 3 4 6 7 10 11 0:0 1 2 3 4 6 7 10 11 '' 0 3 6 328 0 1 3 4 7 8 9 10 11 0 1 3 7 0 8 9 8:0 1 4 0 1 3 4 7 8 9 10 11 9:0 1 2 3 4 6 7 10 11 '' 0 3 9 328 0 2 3 6 7 8 9 10 11 0 1 3 7 7 8 11 7:0 1 4 0 2 3 6 7 8 9 10 11 8:0 1 2 3 4 6 7 10 11 '' 2 8 11 328 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 6 8 10 0 1 3 7 1 3 5 1:0 2 4 0 1 2 3 4 5 6 8 10 1:0 1 2 3 4 5 7 9 11 '' 4 6 8 329 0 2 3 4 5 6 7 8 10 0 1 3 7 3 5 7 3:0 2 4 0 2 3 4 5 6 7 8 10 3:0 1 2 3 4 5 7 9 11 '' 6 8 10 329 0 2 4 5 6 7 8 9 10 0 1 3 7 5 7 9 5:0 2 4 0 2 4 5 6 7 8 9 10 5:0 1 2 3 4 5 7 9 11 '' 0 8 10 329 0 1 2 3 4 5 7 9 11 0 1 3 7 0 2 4 0:0 2 4 0 1 2 3 4 5 7 9 11 0:0 1 2 3 4 5 7 9 11 '' 3 5 7 329 0 1 2 3 4 6 8 10 11 0 1 3 7 1 3 11 11:0 2 4 0 1 2 3 4 6 8 10 11 11:0 1 2 3 4 5 7 9 11 '' 2 4 6 329 0 1 2 3 5 7 9 10 11 0 1 3 7 0 2 10 10:0 2 4 0 1 2 3 5 7 9 10 11 10:0 1 2 3 4 5 7 9 11 '' 1 3 5 329 0 1 3 5 7 8 9 10 11 0 1 3 7 0 8 10 8:0 2 4 0 1 3 5 7 8 9 10 11 8:0 1 2 3 4 5 7 9 11 '' 1 3 11 329 0 2 4 6 7 8 9 10 11 0 1 3 7 7 9 11 7:0 2 4 0 2 4 6 7 8 9 10 11 7:0 1 2 3 4 5 7 9 11 '' 0 2 10 329 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 7 8 9 0 1 3 7 0 1 2 2:0 10 11 0 1 2 3 4 5 7 8 9 5:0 2 3 4 7 8 9 10 11 '' 1 2 3 331 0 1 2 3 4 6 7 8 11 0 1 3 7 0 1 11 1:0 10 11 0 1 2 3 4 6 7 8 11 4:0 2 3 4 7 8 9 10 11 '' 0 1 2 331 0 1 4 5 6 7 8 9 11 0 1 3 7 4 5 6 6:0 10 11 0 1 4 5 6 7 8 9 11 9:0 2 3 4 7 8 9 10 11 '' 5 6 7 331 0 1 2 3 5 6 7 10 11 0 1 3 7 0 10 11 0:0 10 11 0 1 2 3 5 6 7 10 11 3:0 2 3 4 7 8 9 10 11 '' 0 1 11 331 0 3 4 5 6 7 8 10 11 0 1 3 7 3 4 5 5:0 10 11 0 3 4 5 6 7 8 10 11 8:0 2 3 4 7 8 9 10 11 '' 4 5 6 331 0 2 3 4 7 8 9 10 11 0 1 3 7 7 8 9 9:0 10 11 0 2 3 4 7 8 9 10 11 0:0 2 3 4 7 8 9 10 11 '' 8 9 10 331 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 3 4 5 6 7 8 10 0 1 3 7 0 3 5 5:0 7 10 0 1 3 4 5 6 7 8 10 3:0 1 2 3 4 5 7 9 10 '' 0 3 6 333 0 1 2 3 4 5 7 9 10 0 1 3 7 0 2 9 2:0 7 10 0 1 2 3 4 5 7 9 10 0:0 1 2 3 4 5 7 9 10 '' 0 3 9 333 0 2 3 5 6 7 8 9 10 0 1 3 7 2 5 7 7:0 7 10 0 2 3 5 6 7 8 9 10 5:0 1 2 3 4 5 7 9 10 '' 2 5 8 333 0 2 3 4 5 6 7 9 11 0 1 3 7 2 4 11 4:0 7 10 0 2 3 4 5 6 7 9 11 2:0 1 2 3 4 5 7 9 10 '' 2 5 11 333 0 1 2 3 5 7 8 10 11 0 1 3 7 0 7 10 0:0 7 10 0 1 2 3 5 7 8 10 11 10:0 1 2 3 4 5 7 9 10 '' 1 7 10 333 0 1 2 4 6 7 9 10 11 0 1 3 7 6 9 11 11:0 7 10 0 1 2 4 6 7 9 10 11 9:0 1 2 3 4 5 7 9 10 '' 0 6 9 333 0 2 4 5 7 8 9 10 11 0 1 3 7 4 7 9 9:0 7 10 0 2 4 5 7 8 9 10 11 7:0 1 2 3 4 5 7 9 10 '' 4 7 10 333 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 4 5 6 7 8 9 0 1 3 7 1 5 6 6:0 7 11 0 1 2 4 5 6 7 8 9 5:0 1 2 3 4 7 8 9 11 '' 1 6 8 334 0 1 3 4 5 6 7 8 11 0 1 3 7 0 4 5 5:0 7 11 0 1 3 4 5 6 7 8 11 4:0 1 2 3 4 7 8 9 11 '' 0 5 7 334 0 1 2 3 4 7 8 9 11 0 1 3 7 0 1 8 1:0 7 11 0 1 2 3 4 7 8 9 11 0:0 1 2 3 4 7 8 9 11 '' 1 3 8 334 0 2 3 4 5 6 7 10 11 0 1 3 7 3 4 11 4:0 7 11 0 2 3 4 5 6 7 10 11 3:0 1 2 3 4 7 8 9 11 '' 4 6 11 334 0 1 2 3 6 7 8 10 11 0 1 3 7 0 7 11 0:0 7 11 0 1 2 3 6 7 8 10 11 11:0 1 2 3 4 7 8 9 11 '' 0 2 7 334 0 3 4 5 7 8 9 10 11 0 1 3 7 4 8 9 9:0 7 11 0 3 4 5 7 8 9 10 11 8:0 1 2 3 4 7 8 9 11 '' 4 9 11 334 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 6 7 8 9 0 1 3 7 0 1 6 6:0 6 7 0 1 2 3 4 6 7 8 9 9:0 3 4 5 6 7 9 10 11 '' 1 7 335 0 1 2 3 6 7 8 9 10 0 1 3 7 0 6 7 0:0 6 7 0 1 2 3 6 7 8 9 10 3:0 3 4 5 6 7 9 10 11 '' 1 7 335 0 1 2 3 5 6 7 8 11 0 1 3 7 0 5 11 5:0 6 7 0 1 2 3 5 6 7 8 11 8:0 3 4 5 6 7 9 10 11 '' 0 6 335 0 1 2 4 5 6 7 10 11 0 1 3 7 4 10 11 4:0 6 7 0 1 2 4 5 6 7 10 11 7:0 3 4 5 6 7 9 10 11 '' 5 11 335 0 1 4 5 6 7 8 10 11 0 1 3 7 4 5 10 10:0 6 7 0 1 4 5 6 7 8 10 11 1:0 3 4 5 6 7 9 10 11 '' 5 11 335 0 3 4 5 6 7 9 10 11 0 1 3 7 3 4 9 9:0 6 7 0 3 4 5 6 7 9 10 11 0:0 3 4 5 6 7 9 10 11 '' 4 10 335 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 6 7 8 10 0 1 3 7 0 1 3 7 0:0 1 3 7 0 1 2 3 4 6 7 8 10 3:0 1 3 4 5 7 9 10 11 '' 1 2 3 4 7 8 10 336 0 1 2 4 6 7 8 9 10 0 1 3 7 1 6 7 9 6:0 1 3 7 0 1 2 4 6 7 8 9 10 9:0 1 3 4 5 7 9 10 11 '' 1 2 4 7 8 9 10 336 0 1 2 3 5 6 7 9 11 0 1 3 7 0 2 6 11 11:0 1 3 7 0 1 2 3 5 6 7 9 11 2:0 1 3 4 5 7 9 10 11 '' 0 1 2 3 6 7 9 336 0 1 3 5 6 7 8 9 11 0 1 3 7 0 5 6 8 5:0 1 3 7 0 1 3 5 6 7 8 9 11 8:0 1 3 4 5 7 9 10 11 '' 0 1 3 6 7 8 9 336 0 2 4 5 6 7 8 10 11 0 1 3 7 4 5 7 11 4:0 1 3 7 0 2 4 5 6 7 8 10 11 7:0 1 3 4 5 7 9 10 11 '' 0 2 5 6 7 8 11 336 0 1 3 4 5 7 9 10 11 0 1 3 7 0 4 9 10 9:0 1 3 7 0 1 3 4 5 7 9 10 11 0:0 1 3 4 5 7 9 10 11 '' 0 1 4 5 7 10 11 336 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 4 5 6 7 8 10 0 1 3 7 1 5 7 1:0 4 6 0 1 2 4 5 6 7 8 10 1:0 1 3 4 5 6 7 9 11 '' 2 8 338 0 2 3 4 6 7 8 9 10 0 1 3 7 3 7 9 3:0 4 6 0 2 3 4 6 7 8 9 10 3:0 1 3 4 5 6 7 9 11 '' 4 10 338 0 1 3 4 5 6 7 9 11 0 1 3 7 0 4 6 0:0 4 6 0 1 3 4 5 6 7 9 11 0:0 1 3 4 5 6 7 9 11 '' 1 7 338 0 1 2 3 5 7 8 9 11 0 1 3 7 0 2 8 8:0 4 6 0 1 2 3 5 7 8 9 11 8:0 1 3 4 5 6 7 9 11 '' 3 9 338 0 1 2 4 6 7 8 10 11 0 1 3 7 1 7 11 7:0 4 6 0 1 2 4 6 7 8 10 11 7:0 1 3 4 5 6 7 9 11 '' 2 8 338 0 1 3 5 6 7 9 10 11 0 1 3 7 0 6 10 6:0 4 6 0 1 3 5 6 7 9 10 11 6:0 1 3 4 5 6 7 9 11 '' 1 7 338 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 5 6 7 8 9 0 1 3 7 0 2 5 6 2:0 3 4 10 0 1 2 3 5 6 7 8 9 5:0 1 2 3 4 7 8 9 10 '' 0 1 3 5 6 7 9 339 0 1 2 3 4 7 8 9 10 0 1 3 7 0 1 7 9 9:0 3 4 10 0 1 2 3 4 7 8 9 10 0:0 1 2 3 4 7 8 9 10 '' 0 1 2 4 7 8 10 339 0 1 2 4 5 6 7 8 11 0 1 3 7 1 4 5 11 1:0 3 4 10 0 1 2 4 5 6 7 8 11 4:0 1 2 3 4 7 8 9 10 '' 0 2 4 5 6 8 11 339 0 1 2 3 6 7 8 9 11 0 1 3 7 0 6 8 11 8:0 3 4 10 0 1 2 3 6 7 8 9 11 11:0 1 2 3 4 7 8 9 10 '' 0 1 3 6 7 9 11 339 0 1 3 4 5 6 7 10 11 0 1 3 7 0 3 4 10 0:0 3 4 10 0 1 3 4 5 6 7 10 11 3:0 1 2 3 4 7 8 9 10 '' 1 3 4 5 7 10 11 339 0 2 3 4 5 6 9 10 11 0 1 3 7 2 3 9 11 11:0 3 4 10 0 2 3 4 5 6 9 10 11 2:0 1 2 3 4 7 8 9 10 '' 0 2 3 4 6 9 10 339 0 1 4 5 6 7 9 10 11 0 1 3 7 4 6 9 10 6:0 3 4 10 0 1 4 5 6 7 9 10 11 9:0 1 2 3 4 7 8 9 10 '' 1 4 5 7 9 10 11 339 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 5 6 7 8 10 0 1 3 7 0 5 7 5:0 2 7 0 1 2 3 5 6 7 8 10 3:0 2 3 4 5 7 9 10 11 '' 0 7 8 340 0 1 2 3 5 7 8 9 10 0 1 3 7 0 2 7 0:0 2 7 0 1 2 3 5 7 8 9 10 10:0 2 3 4 5 7 9 10 11 '' 2 3 7 340 0 2 3 4 5 7 8 9 10 0 1 3 7 2 7 9 7:0 2 7 0 2 3 4 5 7 8 9 10 5:0 2 3 4 5 7 9 10 11 '' 2 9 10 340 0 1 2 4 5 6 7 9 11 0 1 3 7 4 6 11 4:0 2 7 0 1 2 4 5 6 7 9 11 2:0 2 3 4 5 7 9 10 11 '' 6 7 11 340 0 1 2 4 6 7 8 9 11 0 1 3 7 1 6 11 11:0 2 7 0 1 2 4 6 7 8 9 11 9:0 2 3 4 5 7 9 10 11 '' 1 2 6 340 0 2 3 4 5 7 9 10 11 0 1 3 7 2 4 9 2:0 2 7 0 2 3 4 5 7 9 10 11 0:0 2 3 4 5 7 9 10 11 '' 4 5 9 340 0 2 4 5 6 7 9 10 11 0 1 3 7 4 9 11 9:0 2 7 0 2 4 5 6 7 9 10 11 7:0 2 3 4 5 7 9 10 11 '' 0 4 11 340 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 3 4 5 7 8 9 11 0 1 3 7 0 4 8 0:0 4 8 0 1 3 4 5 7 8 9 11 1:0 2 3 4 6 7 8 10 11 '' 3 7 11 343 0 2 3 4 6 7 8 10 11 0 1 3 7 3 7 11 3:0 4 8 0 2 3 4 6 7 8 10 11 0:0 2 3 4 6 7 8 10 11 '' 2 6 10 343 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 6 7 8 9 0 1 3 7 0 1 2 5 6 2:0 3 4 10 11 0 1 2 3 4 5 6 7 8 9 5:0 1 2 3 4 7 8 9 10 11 '' 0 1 2 3 5 6 7 8 9 344 0 1 2 3 4 5 6 7 8 11 0 1 3 7 0 1 4 5 11 1:0 3 4 10 11 0 1 2 3 4 5 6 7 8 11 4:0 1 2 3 4 7 8 9 10 11 '' 0 1 2 4 5 6 7 8 11 344 0 1 2 3 4 5 6 7 10 11 0 1 3 7 0 3 4 10 11 0:0 3 4 10 11 0 1 2 3 4 5 6 7 10 11 3:0 1 2 3 4 7 8 9 10 11 '' 0 1 3 4 5 6 7 10 11 344 0 1 2 3 4 5 6 9 10 11 0 1 3 7 2 3 9 10 11 11:0 3 4 10 11 0 1 2 3 4 5 6 9 10 11 2:0 1 2 3 4 7 8 9 10 11 '' 0 2 3 4 5 6 9 10 11 344 0 1 2 3 4 5 8 9 10 11 0 1 3 7 1 2 8 9 10 10:0 3 4 10 11 0 1 2 3 4 5 8 9 10 11 1:0 1 2 3 4 7 8 9 10 11 '' 1 2 3 4 5 8 9 10 11 344 0 1 2 3 4 7 8 9 10 11 0 1 3 7 0 1 7 8 9 9:0 3 4 10 11 0 1 2 3 4 7 8 9 10 11 0:0 1 2 3 4 7 8 9 10 11 '' 0 1 2 3 4 7 8 9 10 344 0 1 2 3 6 7 8 9 10 11 0 1 3 7 0 6 7 8 11 8:0 3 4 10 11 0 1 2 3 6 7 8 9 10 11 11:0 1 2 3 4 7 8 9 10 11 '' 0 1 2 3 6 7 8 9 11 344 0 1 2 5 6 7 8 9 10 11 0 1 3 7 5 6 7 10 11 7:0 3 4 10 11 0 1 2 5 6 7 8 9 10 11 10:0 1 2 3 4 7 8 9 10 11 '' 0 1 2 5 6 7 8 10 11 344 0 1 4 5 6 7 8 9 10 11 0 1 3 7 4 5 6 9 10 6:0 3 4 10 11 0 1 4 5 6 7 8 9 10 11 9:0 1 2 3 4 7 8 9 10 11 '' 0 1 4 5 6 7 9 10 11 344 0 3 4 5 6 7 8 9 10 11 0 1 3 7 3 4 5 8 9 5:0 3 4 10 11 0 3 4 5 6 7 8 9 10 11 8:0 1 2 3 4 7 8 9 10 11 '' 0 3 4 5 6 8 9 10 11 344 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 6 7 8 10 0 1 3 7 0 1 3 5 7 0:0 1 3 5 7 0 1 2 3 4 5 6 7 8 10 3:0 1 2 3 4 5 7 9 10 11 '' 0 1 2 3 4 6 7 8 10 345 0 2 3 4 5 6 7 8 9 10 0 1 3 7 2 3 5 7 9 2:0 1 3 5 7 0 2 3 4 5 6 7 8 9 10 5:0 1 2 3 4 5 7 9 10 11 '' 0 2 3 4 5 6 8 9 10 345 0 1 2 3 4 5 6 7 9 11 0 1 3 7 0 2 4 6 11 2:0 2 4 9 10 0 1 2 3 4 5 6 7 9 11 2:0 1 2 3 4 5 7 9 10 11 '' 0 1 2 3 5 6 7 9 11 345 0 1 2 3 4 5 6 8 10 11 0 1 3 7 1 3 5 10 11 1:0 2 4 9 10 0 1 2 3 4 5 6 8 10 11 1:0 1 2 3 4 5 7 9 10 11 '' 0 1 2 4 5 6 8 10 11 345 0 1 2 3 4 5 7 9 10 11 0 1 3 7 0 2 4 9 10 0:0 2 4 9 10 0 1 2 3 4 5 7 9 10 11 0:0 1 2 3 4 5 7 9 10 11 '' 0 1 3 4 5 7 9 10 11 345 0 1 2 3 4 6 8 9 10 11 0 1 3 7 1 3 8 9 11 8:0 1 3 5 7 0 1 2 3 4 6 8 9 10 11 11:0 1 2 3 4 5 7 9 10 11 '' 0 2 3 4 6 8 9 10 11 345 0 1 2 3 5 7 8 9 10 11 0 1 3 7 0 2 7 8 10 7:0 1 3 5 7 0 1 2 3 5 7 8 9 10 11 10:0 1 2 3 4 5 7 9 10 11 '' 1 2 3 5 7 8 9 10 11 345 0 1 2 4 6 7 8 9 10 11 0 1 3 7 1 6 7 9 11 6:0 1 3 5 7 0 1 2 4 6 7 8 9 10 11 9:0 1 2 3 4 5 7 9 10 11 '' 0 1 2 4 6 7 8 9 10 345 0 1 3 5 6 7 8 9 10 11 0 1 3 7 0 5 6 8 10 5:0 1 3 5 7 0 1 3 5 6 7 8 9 10 11 8:0 1 2 3 4 5 7 9 10 11 '' 0 1 3 5 6 7 8 9 11 345 0 2 4 5 6 7 8 9 10 11 0 1 3 7 4 5 7 9 11 4:0 1 3 5 7 0 2 4 5 6 7 8 9 10 11 7:0 1 2 3 4 5 7 9 10 11 '' 0 2 4 5 6 7 8 10 11 345 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 6 7 9 10 0 1 3 7 0 2 3 6 9 2:0 1 4 7 10 0 1 2 3 4 5 6 7 9 10 3:0 1 2 3 4 6 7 9 10 11 '' 0 1 3 4 6 7 9 10 346 0 1 3 4 5 6 7 8 9 10 0 1 3 7 0 3 5 6 9 5:0 1 4 7 10 0 1 3 4 5 6 7 8 9 10 6:0 1 2 3 4 6 7 9 10 11 '' 0 1 3 4 6 7 9 10 346 0 1 2 3 4 5 6 8 9 11 0 1 3 7 1 2 5 8 11 1:0 1 4 7 10 0 1 2 3 4 5 6 8 9 11 2:0 1 2 3 4 6 7 9 10 11 '' 0 2 3 5 6 8 9 11 346 0 2 3 4 5 6 7 8 9 11 0 1 3 7 2 4 5 8 11 4:0 1 4 7 10 0 2 3 4 5 6 7 8 9 11 5:0 1 2 3 4 6 7 9 10 11 '' 0 2 3 5 6 8 9 11 346 0 1 2 3 4 5 7 8 10 11 0 1 3 7 0 1 4 7 10 0:0 1 4 7 10 0 1 2 3 4 5 7 8 10 11 1:0 1 2 3 4 6 7 9 10 11 '' 1 2 4 5 7 8 10 11 346 0 1 2 3 4 6 7 9 10 11 0 1 3 7 0 3 6 9 11 11:0 1 4 7 10 0 1 2 3 4 6 7 9 10 11 0:0 1 2 3 4 6 7 9 10 11 '' 0 1 3 4 6 7 9 10 346 0 1 2 3 5 6 8 9 10 11 0 1 3 7 2 5 8 10 11 10:0 1 4 7 10 0 1 2 3 5 6 8 9 10 11 11:0 1 2 3 4 6 7 9 10 11 '' 0 2 3 5 6 8 9 11 346 0 1 2 4 5 7 8 9 10 11 0 1 3 7 1 4 7 9 10 9:0 1 4 7 10 0 1 2 4 5 7 8 9 10 11 10:0 1 2 3 4 6 7 9 10 11 '' 1 2 4 5 7 8 10 11 346 0 1 3 4 6 7 8 9 10 11 0 1 3 7 0 3 6 8 9 8:0 1 4 7 10 0 1 3 4 6 7 8 9 10 11 9:0 1 2 3 4 6 7 9 10 11 '' 0 1 3 4 6 7 9 10 346 0 2 3 5 6 7 8 9 10 11 0 1 3 7 2 5 7 8 11 7:0 1 4 7 10 0 2 3 5 6 7 8 9 10 11 8:0 1 2 3 4 6 7 9 10 11 '' 0 2 3 5 6 8 9 11 346 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 6 8 9 10 0 1 3 7 1 2 3 5 9 2:0 1 3 7 11 0 1 2 3 4 5 6 8 9 10 2:0 1 2 3 4 6 7 8 10 11 '' 0 2 3 4 5 6 8 9 10 347 0 1 2 4 5 6 7 8 9 10 0 1 3 7 1 5 6 7 9 6:0 1 3 7 11 0 1 2 4 5 6 7 8 9 10 6:0 1 2 3 4 6 7 8 10 11 '' 0 1 2 4 6 7 8 9 10 347 0 1 2 3 4 5 7 8 9 11 0 1 3 7 0 1 2 4 8 1:0 1 3 7 11 0 1 2 3 4 5 7 8 9 11 1:0 1 2 3 4 6 7 8 10 11 '' 1 2 3 4 5 7 8 9 11 347 0 1 3 4 5 6 7 8 9 11 0 1 3 7 0 4 5 6 8 5:0 1 3 7 11 0 1 3 4 5 6 7 8 9 11 5:0 1 2 3 4 6 7 8 10 11 '' 0 1 3 5 6 7 8 9 11 347 0 1 2 3 4 6 7 8 10 11 0 1 3 7 0 1 3 7 11 0:0 1 3 7 11 0 1 2 3 4 6 7 8 10 11 0:0 1 2 3 4 6 7 8 10 11 '' 0 1 2 3 4 6 7 8 10 347 0 2 3 4 5 6 7 8 10 11 0 1 3 7 3 4 5 7 11 4:0 1 3 7 11 0 2 3 4 5 6 7 8 10 11 4:0 1 2 3 4 6 7 8 10 11 '' 0 2 4 5 6 7 8 10 11 347 0 1 2 3 5 6 7 9 10 11 0 1 3 7 0 2 6 10 11 11:0 1 3 7 11 0 1 2 3 5 6 7 9 10 11 11:0 1 2 3 4 6 7 8 10 11 '' 0 1 2 3 5 6 7 9 11 347 0 1 2 4 5 6 8 9 10 11 0 1 3 7 1 5 9 10 11 10:0 1 3 7 11 0 1 2 4 5 6 8 9 10 11 10:0 1 2 3 4 6 7 8 10 11 '' 0 1 2 4 5 6 8 10 11 347 0 1 3 4 5 7 8 9 10 11 0 1 3 7 0 4 8 9 10 9:0 1 3 7 11 0 1 3 4 5 7 8 9 10 11 9:0 1 2 3 4 6 7 8 10 11 '' 0 1 3 4 5 7 9 10 11 347 0 2 3 4 6 7 8 9 10 11 0 1 3 7 3 7 8 9 11 8:0 1 3 7 11 0 2 3 4 6 7 8 9 10 11 8:0 1 2 3 4 6 7 8 10 11 '' 0 2 3 4 6 8 9 10 11 347 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 5 7 8 9 10 0 1 3 7 0 1 2 7 9 0:0 1 2 7 9 0 1 2 3 4 5 7 8 9 10 10:0 2 3 4 5 6 7 9 10 11 '' 0 1 2 3 4 7 8 9 10 348 0 1 2 3 5 6 7 8 9 10 0 1 3 7 0 2 5 6 7 5:0 1 2 7 9 0 1 2 3 5 6 7 8 9 10 3:0 2 3 4 5 6 7 9 10 11 '' 0 1 2 3 5 6 7 8 9 348 0 1 2 3 4 6 7 8 9 11 0 1 3 7 0 1 6 8 11 1:0 5 7 10 11 0 1 2 3 4 6 7 8 9 11 9:0 2 3 4 5 6 7 9 10 11 '' 0 1 2 3 6 7 8 9 11 348 0 1 2 4 5 6 7 8 9 11 0 1 3 7 1 4 5 6 11 4:0 1 2 7 9 0 1 2 4 5 6 7 8 9 11 2:0 2 3 4 5 6 7 9 10 11 '' 0 1 2 4 5 6 7 8 11 348 0 1 2 3 5 6 7 8 10 11 0 1 3 7 0 5 7 10 11 0:0 5 7 10 11 0 1 2 3 5 6 7 8 10 11 8:0 2 3 4 5 6 7 9 10 11 '' 0 1 2 5 6 7 8 10 11 348 0 1 3 4 5 6 7 8 10 11 0 1 3 7 0 3 4 5 10 3:0 1 2 7 9 0 1 3 4 5 6 7 8 10 11 1:0 2 3 4 5 6 7 9 10 11 '' 0 1 3 4 5 6 7 10 11 348 0 1 2 4 5 6 7 9 10 11 0 1 3 7 4 6 9 10 11 9:0 1 2 7 9 0 1 2 4 5 6 7 9 10 11 7:0 2 3 4 5 6 7 9 10 11 '' 0 1 4 5 6 7 9 10 11 348 0 2 3 4 5 6 7 9 10 11 0 1 3 7 2 3 4 9 11 2:0 1 2 7 9 0 2 3 4 5 6 7 9 10 11 0:0 2 3 4 5 6 7 9 10 11 '' 0 2 3 4 5 6 9 10 11 348 0 1 3 4 5 6 8 9 10 11 0 1 3 7 3 5 8 9 10 8:0 1 2 7 9 0 1 3 4 5 6 8 9 10 11 6:0 2 3 4 5 6 7 9 10 11 '' 0 3 4 5 6 8 9 10 11 348 0 2 3 4 5 7 8 9 10 11 0 1 3 7 2 4 7 8 9 7:0 1 2 7 9 0 2 3 4 5 7 8 9 10 11 5:0 2 3 4 5 6 7 9 10 11 '' 2 3 4 5 7 8 9 10 11 348 Chromaset Cell(ct) Generator(pcset) Generator(root:pct1) Generated(pcset) Generated(root:pct1) Missing Dupli. Gen.(ms idx) 0 1 2 3 4 6 7 8 9 10 0 1 3 7 0 1 3 6 7 9 0:0 1 3 6 7 9 0 1 2 3 4 6 7 8 9 10 3:0 1 3 4 5 6 7 9 10 11 '' 0 1 2 3 4 6 7 8 9 10 349 0 1 2 3 5 6 7 8 9 11 0 1 3 7 0 2 5 6 8 11 5:0 1 3 6 7 9 0 1 2 3 5 6 7 8 9 11 2:0 1 3 4 5 6 7 9 10 11 '' 0 1 2 3 5 6 7 8 9 11 349 0 1 2 4 5 6 7 8 10 11 0 1 3 7 1 4 5 7 10 11 4:0 1 3 6 7 9 0 1 2 4 5 6 7 8 10 11 1:0 1 3 4 5 6 7 9 10 11 '' 0 1 2 4 5 6 7 8 10 11 349 0 1 3 4 5 6 7 9 10 11 0 1 3 7 0 3 4 6 9 10 3:0 1 3 6 7 9 0 1 3 4 5 6 7 9 10 11 0:0 1 3 4 5 6 7 9 10 11 '' 0 1 3 4 5 6 7 9 10 11 349 0 2 3 4 5 6 8 9 10 11 0 1 3 7 2 3 5 8 9 11 2:0 1 3 6 7 9 0 2 3 4 5 6 8 9 10 11 5:0 1 3 4 5 6 7 9 10 11 '' 0 2 3 4 5 6 8 9 10 11 349

Standard Chord Types Index
Collapsible Chord Types Index